Louis Faust, Patrick Wilson, Shusaku Asai, Sunyang Fu, Hongfang Liu, Xiaoyang Ruan, Curt Storlie
{"title":"Considerations for Quality Control Monitoring of Machine Learning Models in Clinical Practice.","authors":"Louis Faust, Patrick Wilson, Shusaku Asai, Sunyang Fu, Hongfang Liu, Xiaoyang Ruan, Curt Storlie","doi":"10.2196/50437","DOIUrl":null,"url":null,"abstract":"<p><p>Integrating machine learning (ML) models into clinical practice presents a challenge of maintaining their efficacy over time. While existing literature offers valuable strategies for detecting declining model performance, there is a need to document the broader challenges and solutions associated with the real-world development and integration of model monitoring solutions. This work details the development and use of a platform for monitoring the performance of a production-level ML model operating in Mayo Clinic. In this paper, we aimed to provide a series of considerations and guidelines necessary for integrating such a platform into a team's technical infrastructure and workflow. We have documented our experiences with this integration process, discussed the broader challenges encountered with real-world implementation and maintenance, and included the source code for the platform. Our monitoring platform was built as an R shiny application, developed and implemented over the course of 6 months. The platform has been used and maintained for 2 years and is still in use as of July 2023. The considerations necessary for the implementation of the monitoring platform center around 4 pillars: feasibility (what resources can be used for platform development?); design (through what statistics or models will the model be monitored, and how will these results be efficiently displayed to the end user?); implementation (how will this platform be built, and where will it exist within the IT ecosystem?); and policy (based on monitoring feedback, when and what actions will be taken to fix problems, and how will these problems be translated to clinical staff?). While much of the literature surrounding ML performance monitoring emphasizes methodological approaches for capturing changes in performance, there remains a battery of other challenges and considerations that must be addressed for successful real-world implementation.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e50437"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/50437","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating machine learning (ML) models into clinical practice presents a challenge of maintaining their efficacy over time. While existing literature offers valuable strategies for detecting declining model performance, there is a need to document the broader challenges and solutions associated with the real-world development and integration of model monitoring solutions. This work details the development and use of a platform for monitoring the performance of a production-level ML model operating in Mayo Clinic. In this paper, we aimed to provide a series of considerations and guidelines necessary for integrating such a platform into a team's technical infrastructure and workflow. We have documented our experiences with this integration process, discussed the broader challenges encountered with real-world implementation and maintenance, and included the source code for the platform. Our monitoring platform was built as an R shiny application, developed and implemented over the course of 6 months. The platform has been used and maintained for 2 years and is still in use as of July 2023. The considerations necessary for the implementation of the monitoring platform center around 4 pillars: feasibility (what resources can be used for platform development?); design (through what statistics or models will the model be monitored, and how will these results be efficiently displayed to the end user?); implementation (how will this platform be built, and where will it exist within the IT ecosystem?); and policy (based on monitoring feedback, when and what actions will be taken to fix problems, and how will these problems be translated to clinical staff?). While much of the literature surrounding ML performance monitoring emphasizes methodological approaches for capturing changes in performance, there remains a battery of other challenges and considerations that must be addressed for successful real-world implementation.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.