Zhinous Shahidzadeh Yazdi, Elizabeth A Streeten, Hilary B Whitlatch, Salma A Bargal, Amber L Beitelshees, Simeon I Taylor
{"title":"Value of Vitamin D Metabolite Ratios in 3 Patients as Diagnostic Criteria to Assess Vitamin D Status.","authors":"Zhinous Shahidzadeh Yazdi, Elizabeth A Streeten, Hilary B Whitlatch, Salma A Bargal, Amber L Beitelshees, Simeon I Taylor","doi":"10.1210/jcemcr/luae095","DOIUrl":null,"url":null,"abstract":"<p><p>Although clinical guidelines recommend measuring total plasma 25-hydroxyvitamin D (25[OH]D) to assess vitamin D (VitD) status, this index does not account for 3-fold inter-individual variation in VitD binding protein (VDBP) level. We present 3 individuals with total plasma 25(OH)D levels of 10.8 to 12.3 ng/mL (27-30.7 nmol/L). Because Endocrine Society guidelines define VitD deficiency as 25(OH)D ≤ 20 ng/mL (50 nmol/L), all 3 would be judged to be VitD deficient. VitD3 supplementation increased 25(OH)D to the range of 31.7 to 33.8 ng/mL (79.1-84.4 nmol/L). Patient #1 exhibited secondary hyperparathyroidism; VitD3 supplementation decreased parathyroid hormone (PTH) by 34% without a clinically significant change in PTH levels in the other 2 individuals. Thus, 25(OH)D level did not distinguish between the 1 patient who had secondary hyperparathyroidism and the 2 who did not. We therefore inquired whether VitD metabolite ratios (which are VDBP-independent) might distinguish among these 3 individuals. Of all the assessed ratios, the 1,25(OH)<sub>2</sub>D/24,25(OH)<sub>2</sub>D ratio was the most informative, which had a value of 102 pg/ng in the individual with secondary hyperparathyroidism but lower values (41 and 20 pg/ng) in the other 2 individuals. These cases illustrate the value of the 1,25(OH)<sub>2</sub>D/24,25(OH)<sub>2</sub>D ratio to provide clinically relevant information about VitD status.</p>","PeriodicalId":73540,"journal":{"name":"JCEM case reports","volume":"2 7","pages":"luae095"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCEM case reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/jcemcr/luae095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although clinical guidelines recommend measuring total plasma 25-hydroxyvitamin D (25[OH]D) to assess vitamin D (VitD) status, this index does not account for 3-fold inter-individual variation in VitD binding protein (VDBP) level. We present 3 individuals with total plasma 25(OH)D levels of 10.8 to 12.3 ng/mL (27-30.7 nmol/L). Because Endocrine Society guidelines define VitD deficiency as 25(OH)D ≤ 20 ng/mL (50 nmol/L), all 3 would be judged to be VitD deficient. VitD3 supplementation increased 25(OH)D to the range of 31.7 to 33.8 ng/mL (79.1-84.4 nmol/L). Patient #1 exhibited secondary hyperparathyroidism; VitD3 supplementation decreased parathyroid hormone (PTH) by 34% without a clinically significant change in PTH levels in the other 2 individuals. Thus, 25(OH)D level did not distinguish between the 1 patient who had secondary hyperparathyroidism and the 2 who did not. We therefore inquired whether VitD metabolite ratios (which are VDBP-independent) might distinguish among these 3 individuals. Of all the assessed ratios, the 1,25(OH)2D/24,25(OH)2D ratio was the most informative, which had a value of 102 pg/ng in the individual with secondary hyperparathyroidism but lower values (41 and 20 pg/ng) in the other 2 individuals. These cases illustrate the value of the 1,25(OH)2D/24,25(OH)2D ratio to provide clinically relevant information about VitD status.