{"title":"Promising directions of machine learning for partial differential equations","authors":"Steven L. Brunton, J. Nathan Kutz","doi":"10.1038/s43588-024-00643-2","DOIUrl":null,"url":null,"abstract":"Partial differential equations (PDEs) are among the most universal and parsimonious descriptions of natural physical laws, capturing a rich variety of phenomenology and multiscale physics in a compact and symbolic representation. Here, we examine several promising avenues of PDE research that are being advanced by machine learning, including (1) discovering new governing PDEs and coarse-grained approximations for complex natural and engineered systems, (2) learning effective coordinate systems and reduced-order models to make PDEs more amenable to analysis, and (3) representing solution operators and improving traditional numerical algorithms. In each of these fields, we summarize key advances, ongoing challenges, and opportunities for further development. Machine learning has enabled major advances in the field of partial differential equations. This Review discusses some of these efforts and other ongoing challenges and opportunities for development.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"4 7","pages":"483-494"},"PeriodicalIF":12.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00643-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Partial differential equations (PDEs) are among the most universal and parsimonious descriptions of natural physical laws, capturing a rich variety of phenomenology and multiscale physics in a compact and symbolic representation. Here, we examine several promising avenues of PDE research that are being advanced by machine learning, including (1) discovering new governing PDEs and coarse-grained approximations for complex natural and engineered systems, (2) learning effective coordinate systems and reduced-order models to make PDEs more amenable to analysis, and (3) representing solution operators and improving traditional numerical algorithms. In each of these fields, we summarize key advances, ongoing challenges, and opportunities for further development. Machine learning has enabled major advances in the field of partial differential equations. This Review discusses some of these efforts and other ongoing challenges and opportunities for development.