Probabilistic Nested Model Selection in Pharmacokinetic Analysis of DCE-MRI Data in Animal Model of Cerebral Tumor.

Hassan Bagher-Ebadian, Stephen L Brown, Mohammad M Ghassemi, Prabhu C Acharya, Indrin J Chetty, Benjamin Movsas, James R Ewing, Kundan Thind
{"title":"Probabilistic Nested Model Selection in Pharmacokinetic Analysis of DCE-MRI Data in Animal Model of Cerebral Tumor.","authors":"Hassan Bagher-Ebadian, Stephen L Brown, Mohammad M Ghassemi, Prabhu C Acharya, Indrin J Chetty, Benjamin Movsas, James R Ewing, Kundan Thind","doi":"10.21203/rs.3.rs-4469232/v1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace. This study introduces an unsupervised feature engineering technique (Kohonen-Self-Organizing-Map (K-SOM)) to estimate the voxel-wise probability of each nested model.</p><p><strong>Methods: </strong>Sixty-six immune-compromised-RNU rats were implanted with human U-251N cancer cells, and DCE-MRI data were acquired from all the rat brains. The time-trace of change in the longitudinalrelaxivity <math> <mfenced><mrow><mi>Δ</mi> <msub><mrow><mi>R</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> </mfenced> </math> for all animals' brain voxels was calculated. DCE-MRI pharmacokinetic (PK) analysis was performed using NMS to estimate three model regions: Model-1: normal vasculature without leakage, Model-2: tumor tissues with leakage without back-flux to the vasculature, Model-3: tumor vessels with leakage and back-flux. Approximately two hundred thirty thousand (229,314) normalized <math><mi>Δ</mi> <msub><mrow><mi>R</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> profiles of animals' brain voxels along with their NMS results were used to build a K-SOM (topology-size: 8×8, with competitive-learning algorithm) and probability map of each model. <i>K</i>-fold nested-cross-validation (NCV, k=10) was used to evaluate the performance of the K-SOM probabilistic-NMS (PNMS) technique against the NMS technique.</p><p><strong>Results: </strong>The K-SOM PNMS's estimation for the leaky tumor regions were strongly similar (Dice-Similarity-Coefficient, DSC=0.774 [CI: 0.731-0.823], and 0.866 [CI: 0.828-0.912] for Models 2 and 3, respectively) to their respective NMS regions. The mean-percent-differences (MPDs, NCV, k=10) for the estimated permeability parameters by the two techniques were: -28%, +18%, and +24%, for <math> <msub><mrow><mi>v</mi></mrow> <mrow><mi>p</mi></mrow> </msub> <mo>,</mo> <msup><mrow><mi>K</mi></mrow> <mrow><mtext>trans</mtext></mrow> </msup> </math> , and <math> <msub><mrow><mi>v</mi></mrow> <mrow><mi>e</mi></mrow> </msub> </math> , respectively. The KSOM-PNMS technique produced microvasculature parameters and NMS regions less impacted by the arterial-input-function dispersion effect.</p><p><strong>Conclusion: </strong>This study introduces an unsupervised model-averaging technique (K-SOM) to estimate the contribution of different nested-models in PK analysis and provides a faster estimate of permeability parameters.</p>","PeriodicalId":94282,"journal":{"name":"Research square","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213218/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research square","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.3.rs-4469232/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Best current practice in the analysis of dynamic contrast enhanced (DCE)-MRI is to employ a voxel-by-voxel model selection from a hierarchy of nested models. This nested model selection (NMS) assumes that the observed time-trace of contrast-agent (CA) concentration within a voxel, corresponds to a singular physiologically nested model. However, admixtures of different models may exist within a voxel's CA time-trace. This study introduces an unsupervised feature engineering technique (Kohonen-Self-Organizing-Map (K-SOM)) to estimate the voxel-wise probability of each nested model.

Methods: Sixty-six immune-compromised-RNU rats were implanted with human U-251N cancer cells, and DCE-MRI data were acquired from all the rat brains. The time-trace of change in the longitudinalrelaxivity Δ R 1 for all animals' brain voxels was calculated. DCE-MRI pharmacokinetic (PK) analysis was performed using NMS to estimate three model regions: Model-1: normal vasculature without leakage, Model-2: tumor tissues with leakage without back-flux to the vasculature, Model-3: tumor vessels with leakage and back-flux. Approximately two hundred thirty thousand (229,314) normalized Δ R 1 profiles of animals' brain voxels along with their NMS results were used to build a K-SOM (topology-size: 8×8, with competitive-learning algorithm) and probability map of each model. K-fold nested-cross-validation (NCV, k=10) was used to evaluate the performance of the K-SOM probabilistic-NMS (PNMS) technique against the NMS technique.

Results: The K-SOM PNMS's estimation for the leaky tumor regions were strongly similar (Dice-Similarity-Coefficient, DSC=0.774 [CI: 0.731-0.823], and 0.866 [CI: 0.828-0.912] for Models 2 and 3, respectively) to their respective NMS regions. The mean-percent-differences (MPDs, NCV, k=10) for the estimated permeability parameters by the two techniques were: -28%, +18%, and +24%, for v p , K trans , and v e , respectively. The KSOM-PNMS technique produced microvasculature parameters and NMS regions less impacted by the arterial-input-function dispersion effect.

Conclusion: This study introduces an unsupervised model-averaging technique (K-SOM) to estimate the contribution of different nested-models in PK analysis and provides a faster estimate of permeability parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑肿瘤动物模型 DCE-MRI 数据药代动力学分析中的概率嵌套模型选择
目的 目前分析动态对比增强(DCE)-MRI 的最佳方法是从嵌套模型的层次结构中逐个象素选择模型。这种嵌套模型选择(NMS)假定在一个体素内观察到的造影剂(CA)浓度的时间轨迹对应于一个单一的生理嵌套模型。然而,在一个体素的 CA 时间轨迹中可能存在不同模型的混合物。本研究引入了一种无监督特征工程技术(Kohonen-Self-Organizing-Map (K-SOM))来估计每个嵌套模型在象素上的概率。方法 为 66 只免疫受损的 RNU 大鼠植入人类 U-251N 癌细胞,并获取所有大鼠大脑的 DCE-MRI 数据。计算了所有动物大脑体素纵向松弛度(ΔR 1)变化的时间轨迹。使用 NMS 进行了 DCE-MRI 药代动力学(PK)分析,以估计三个模型区域:模型-1:无渗漏的正常血管;模型-2:有渗漏且无回流到血管的肿瘤组织;模型-3:有渗漏和回流的肿瘤血管。动物脑部体素的约 23 万(229,314)个归一化 ΔR 1 图谱及其 NMS 结果被用于构建 K-SOM(拓扑尺寸:8x8,采用竞争学习算法)和每个模型的概率图。使用 K 倍嵌套交叉验证(NCV,k = 10)来评估 K-SOM 概率 NMS(PNMS)技术与 NMS 技术的性能。结果 K-SOM PNMS 对肿瘤渗漏区域的估计与各自的 NMS 区域非常相似(模型 2 和模型 3 的 Dice-Similarity-Coefficient, DSC = 0.774 [CI:0.731-0.823]和 0.866 [CI:0.828-0.912])。两种技术估算的渗透率参数的平均百分比差(MPDs,NCV,k = 10)分别为v p、K trans 和 v e 分别为-28%、+ 18% 和 + 24%。KSOM-PNMS 技术得出的微血管参数和 NMS 区域受动脉输入功能分散效应的影响较小。结论 本研究引入了一种无监督模型平均技术(K-SOM)来估计 PK 分析中不同嵌套模型的贡献,并提供了更快的渗透性参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Long non-coding RNA Malat1 fine-tunes bone homeostasis and repair by orchestrating cellular crosstalk and the β-catenin-OPG/Jagged1 pathway. Dietary lipid is largely deposited in skin and rapidly affects insulating properties. Novel Machine Learning of DNA Methylation Patterns to Diagnose Complex Disease: Identification of Cerebral Palsy with Concurrent Epilepsy. The context-dependent epigenetic and organogenesis programs determine 3D vs. 2D cellular fitness of MYC-driven murine liver cancer cells. GZMK+CD8+ T cells Target A Specific Acinar Cell Type in Sjögren's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1