Manipulating electron redistribution in platinum for enhanced alkaline water splitting kinetics†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL Catalysis Science & Technology Pub Date : 2024-07-01 DOI:10.1039/d4cy00503a
Wensheng Zhang , Xu Chen , Jinyu Zhao , Lin Niu , Guipeng Wang , Xiaomin Wang
{"title":"Manipulating electron redistribution in platinum for enhanced alkaline water splitting kinetics†","authors":"Wensheng Zhang ,&nbsp;Xu Chen ,&nbsp;Jinyu Zhao ,&nbsp;Lin Niu ,&nbsp;Guipeng Wang ,&nbsp;Xiaomin Wang","doi":"10.1039/d4cy00503a","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of hydrogen production <em>via</em> water splitting technology makes it urgent to develop low-cost and highly active bifunctional catalysts for hydrogen and oxygen evolution reactions (HER/OER). In this study, a low platinum (Pt) bimetallic phosphide heterostructure (Pt-NiFe-P/NF), derived from three-dimensional NiFe metal–organic framework (NiFe-MOF) nanorods on nickel foam (NF), was developed using a two-step hydrothermal and phosphorization process. The nickel-iron phosphide nanorod array heterostructure boasts a large surface area with numerous active sites, which enhances charge and substance transfer. The integration of metallic Pt with NiFe-P heterostructures subtly adjusts the electronic redistribution between them, thereby improving the kinetics of water splitting. Consequently, the Pt-NiFe-P/NF catalyst demonstrated exceptional HER and OER performance in a 1 M KOH solution, with overpotentials of 97 and 266 mV at 100 mA cm<sup>−2</sup>, respectively. Remarkably, an electrolyzer utilizing this catalyst requires just a 1.65 V potential to achieve a current density of 100 mA cm<sup>−2</sup>, exceeding the capabilities of conventional Pt/C||RuO<sub>2</sub> systems, which require 2.10 V and outperforming many advanced electrochemical water splitting catalysts currently in use.</p></div>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2044475324003113","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of hydrogen production via water splitting technology makes it urgent to develop low-cost and highly active bifunctional catalysts for hydrogen and oxygen evolution reactions (HER/OER). In this study, a low platinum (Pt) bimetallic phosphide heterostructure (Pt-NiFe-P/NF), derived from three-dimensional NiFe metal–organic framework (NiFe-MOF) nanorods on nickel foam (NF), was developed using a two-step hydrothermal and phosphorization process. The nickel-iron phosphide nanorod array heterostructure boasts a large surface area with numerous active sites, which enhances charge and substance transfer. The integration of metallic Pt with NiFe-P heterostructures subtly adjusts the electronic redistribution between them, thereby improving the kinetics of water splitting. Consequently, the Pt-NiFe-P/NF catalyst demonstrated exceptional HER and OER performance in a 1 M KOH solution, with overpotentials of 97 and 266 mV at 100 mA cm−2, respectively. Remarkably, an electrolyzer utilizing this catalyst requires just a 1.65 V potential to achieve a current density of 100 mA cm−2, exceeding the capabilities of conventional Pt/C||RuO2 systems, which require 2.10 V and outperforming many advanced electrochemical water splitting catalysts currently in use.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
操纵铂金中的电子再分布,提高碱性水分离动力学†。
通过水分离技术制氢的潜力使得开发用于氢氧进化反应(HER/OER)的低成本、高活性双功能催化剂成为当务之急。本研究采用水热法和磷化法两步工艺,开发了一种低铂(Pt)双金属磷化异质结构(Pt-NiFe-P/NF),该异质结构源自泡沫镍(NF)上的三维镍铁金属有机框架(NiFe-MOF)纳米棒。这种镍-磷化铁纳米棒阵列异质结构具有较大的表面积和众多的活性位点,从而增强了电荷和物质的转移。金属铂与 NiFe-P 异质结构的结合巧妙地调整了它们之间的电子再分配,从而改善了水分离的动力学。因此,Pt-NiFe-P/NF 催化剂在 1 M KOH 溶液中表现出卓越的 HER 和 OER 性能,在 100 mA cm-2 条件下的过电位分别为 97 和 266 mV。值得注意的是,使用这种催化剂的电解槽只需要 1.65 V 的电位就能达到 100 mA cm-2 的电流密度,超过了需要 2.10 V 电位的传统 Pt/C||RuO2 系统,也优于目前使用的许多先进电化学水分离催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
期刊最新文献
Back cover Hydrolysis of ammonia borane for green hydrogen production over a Pd/C3N4 nanocatalyst synthesized by electron beam irradiation Back cover Combined experimental and molecular dynamics approach towards a rational design of the YfeX biocatalyst for enhanced carbene transferase reactivity† ZIF-8 pyrolized N-doped carbon-supported iron catalysts for enhanced CO2 hydrogenation activity to valuable hydrocarbons†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1