Water-assisted absorption of CO2 by 3-amino-1-propanol: a mechanistic insight†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-07-01 DOI:10.1039/D4CP02207F
Shivam Rawat and C. N. Ramachandran
{"title":"Water-assisted absorption of CO2 by 3-amino-1-propanol: a mechanistic insight†","authors":"Shivam Rawat and C. N. Ramachandran","doi":"10.1039/D4CP02207F","DOIUrl":null,"url":null,"abstract":"<p >The mechanism of the proton transfer in the reaction between CO<small><sub>2</sub></small> and 3-amino-1-propanol with and without water molecules is investigated quantum-mechanically. Studies revealed that water molecules and the hydroxy group of 3-amino-1-propanol explicitly participate in the proton transfer, forming carbamic acid. It is found that water has a high impact on the energetics of CO<small><sub>2</sub></small> absorption by reducing the barrier for proton transfer. Apart from the water molecules, the hydroxy group of alkanolamine significantly affects the energetics of the reaction. Five cases involving two, three, and four protons are discussed, and it is found that the proton transfer occurs in a concerted manner that depends on the initial configuration of the reaction complex. The present study unequivocally confirms the role of water molecules in the CO<small><sub>2</sub></small> capturing <em>via</em> amine-based solvents.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp02207f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The mechanism of the proton transfer in the reaction between CO2 and 3-amino-1-propanol with and without water molecules is investigated quantum-mechanically. Studies revealed that water molecules and the hydroxy group of 3-amino-1-propanol explicitly participate in the proton transfer, forming carbamic acid. It is found that water has a high impact on the energetics of CO2 absorption by reducing the barrier for proton transfer. Apart from the water molecules, the hydroxy group of alkanolamine significantly affects the energetics of the reaction. Five cases involving two, three, and four protons are discussed, and it is found that the proton transfer occurs in a concerted manner that depends on the initial configuration of the reaction complex. The present study unequivocally confirms the role of water molecules in the CO2 capturing via amine-based solvents.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-氨基-1-丙醇对二氧化碳的水辅助吸收:机理透视
研究人员用量子力学方法研究了有水分子和无水分子的二氧化碳与 3-氨基-1-丙醇反应中质子转移的机理。研究发现,水分子和 3-氨基-1-丙醇的羟基明确参与质子转移,形成氨基甲酸。研究发现,水通过降低质子转移的障碍,对二氧化碳吸收的能量有很大影响。除水分子外,烷醇胺的羟基也会对反应的能量产生显著影响。本研究讨论了涉及两个、三个和四个质子的五种情况,发现质子转移以一种协同的方式发生,而这种方式取决于反应复合物的初始构型。本研究明确证实了水分子在通过胺类溶剂捕获二氧化碳中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
A first-principles study of organic Lewis bases for passivating tin-based perovskite solar cells. The indanone N-H type excited-state intramolecular proton transfer (ESIPT); the observation of a mechanically induced ESIPT reaction. Simulations of photoinduced processes with the exact factorization: State of the art and perspectives Complete kinetic and photochemical characterization of the multi-step photochromic reaction of DASA Tunable electronic and optoelectronic characteristics of two-dimensional β-AsP monolayer: A first-principles study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1