{"title":"[Advances in Nanotechnology-Based Drug Delivery Systems in the Treatment of Hepatocellular Carcinoma].","authors":"Sen-Lin Yang, Yang Xiang, Yi-Jun Yang","doi":"10.3881/j.issn.1000-503X.15669","DOIUrl":null,"url":null,"abstract":"<p><p>Primary liver cancer is one of the most common malignant tumors of the digestive system,of which hepatocellular carcinoma (HCC) accounts for more than 90% of the total cases.The patients with early HCC treated by surgical resection generally demonstrate good prognosis.However,due to the insidious onset,HCC in the vast majority of patients has progressed to the mid-to-late stage when being diagnosed.As a result,surgical treatment has unsatisfactory effects,and non-surgical treatment methods generally have severe side effects and low tumor selectivity.Nanoparticles (NP) with small sizes,large specific surface areas,and unique physical and chemical properties have become potential carriers for the delivery of therapeutic agents such as drugs,genes,and cytokines.The nano-delivery systems with NP as the carrier can regulate the metabolism and transformation of drugs,genes,and cytokines <i>in vivo</i> from time,space,and dose via functional modification,showing great potential in the treatment of HCC.This paper introduces the current status and advantages of several common nano-delivery systems,including organic nano-carriers,inorganic nano-carriers,and exosomes,in the treatment of HCC.Furthermore,this paper summarizes the mechanisms of NP-based nano-carriers in treating HCC and provides reference for the development of new nano-delivery systems.</p>","PeriodicalId":6919,"journal":{"name":"中国医学科学院学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国医学科学院学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.3881/j.issn.1000-503X.15669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Primary liver cancer is one of the most common malignant tumors of the digestive system,of which hepatocellular carcinoma (HCC) accounts for more than 90% of the total cases.The patients with early HCC treated by surgical resection generally demonstrate good prognosis.However,due to the insidious onset,HCC in the vast majority of patients has progressed to the mid-to-late stage when being diagnosed.As a result,surgical treatment has unsatisfactory effects,and non-surgical treatment methods generally have severe side effects and low tumor selectivity.Nanoparticles (NP) with small sizes,large specific surface areas,and unique physical and chemical properties have become potential carriers for the delivery of therapeutic agents such as drugs,genes,and cytokines.The nano-delivery systems with NP as the carrier can regulate the metabolism and transformation of drugs,genes,and cytokines in vivo from time,space,and dose via functional modification,showing great potential in the treatment of HCC.This paper introduces the current status and advantages of several common nano-delivery systems,including organic nano-carriers,inorganic nano-carriers,and exosomes,in the treatment of HCC.Furthermore,this paper summarizes the mechanisms of NP-based nano-carriers in treating HCC and provides reference for the development of new nano-delivery systems.
期刊介绍:
Acta Academiae Medicinae Sinicae was founded in February 1979. It is a comprehensive medical academic journal published in China and abroad, supervised by the Ministry of Health of the People's Republic of China and sponsored by the Chinese Academy of Medical Sciences and Peking Union Medical College.
The journal mainly reports the latest research results, work progress and dynamics in the fields of basic medicine, clinical medicine, pharmacy, preventive medicine, biomedicine, medical teaching and research, aiming to promote the exchange of medical information and improve the academic level of medicine. At present, the journal has been included in 10 famous foreign retrieval systems and their databases [Medline (PubMed online version), Elsevier, EMBASE, CA, WPRIM, ExtraMED, IC, JST, UPD and EBSCO-ASP]; and has been included in important domestic retrieval systems and databases [China Science Citation Database (Documentation and Information Center of the Chinese Academy of Sciences), China Core Journals Overview (Peking University Library), China Science and Technology Paper Statistical Source Database (China Science and Technology Core Journals) (China Institute of Scientific and Technological Information), China Science and Technology Journal Paper and Citation Database (China Institute of Scientific and Technological Information)].