Long-acting Erwinia chrysanthemi, Pegcrisantaspase, induces alternate amino acid biosynthetic pathways in a preclinical model of pancreatic ductal adenocarcinoma.

IF 6 3区 医学 Q1 CELL BIOLOGY Cancer & Metabolism Pub Date : 2024-06-30 DOI:10.1186/s40170-024-00346-2
Dominique Bollino, Kanwal Hameed, Anusha Bhat, Arveen Zarrabi, Andrea Casildo, Xinrong Ma, Kayla M Tighe, Brandon Carter-Cooper, Erin T Strovel, Rena G Lapidus, Ashkan Emadi
{"title":"Long-acting Erwinia chrysanthemi, Pegcrisantaspase, induces alternate amino acid biosynthetic pathways in a preclinical model of pancreatic ductal adenocarcinoma.","authors":"Dominique Bollino, Kanwal Hameed, Anusha Bhat, Arveen Zarrabi, Andrea Casildo, Xinrong Ma, Kayla M Tighe, Brandon Carter-Cooper, Erin T Strovel, Rena G Lapidus, Ashkan Emadi","doi":"10.1186/s40170-024-00346-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics.</p><p><strong>Methods: </strong>Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model.</p><p><strong>Results: </strong>Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes.</p><p><strong>Conclusions: </strong>Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.</p>","PeriodicalId":9418,"journal":{"name":"Cancer & Metabolism","volume":"12 1","pages":"19"},"PeriodicalIF":6.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218198/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40170-024-00346-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease without meaningful therapeutic options beyond the first salvage therapy. Targeting PDAC metabolism through amino acid restriction has emerged as a promising new strategy, with asparaginases, enzymes that deplete plasma glutamine and asparagine, reaching clinical trials. In this study, we investigated the anti-PDAC activity of the asparaginase formulation Pegcrisantaspase (PegC) alone and in combination with standard-of-care chemotherapeutics.

Methods: Using mouse and human PDAC cell lines, we assessed the impact of PegC on cell proliferation, cell death, and cell cycle progression. We further characterized the in vitro effect of PegC on protein synthesis as well as the generation of reactive oxygen species and levels of glutathione, a major cellular antioxidant. Additional cell line studies examined the effect of the combination of PegC with standard-of-care chemotherapeutics. In vivo, the tolerability and efficacy of PegC, as well as the impact on plasma amino acid levels, was assessed using the C57BL/6-derived KPC syngeneic mouse model.

Results: Here we report that PegC demonstrated potent anti-proliferative activity in a panel of human and murine PDAC cell lines. This decrease in proliferation was accompanied by inhibited protein synthesis and decreased levels of glutathione. In vivo, PegC was tolerable and effectively reduced plasma levels of glutamine and asparagine, leading to a statistically significant inhibition of tumor growth in a syngeneic mouse model of PDAC. There was no observable in vitro or in vivo benefit to combining PegC with standard-of-care chemotherapeutics, including oxaliplatin, irinotecan, 5-fluorouracil, paclitaxel, and gemcitabine. Notably, PegC treatment increased tumor expression of asparagine and serine biosynthetic enzymes.

Conclusions: Taken together, our results demonstrate the potential therapeutic use of PegC in PDAC and highlight the importance of identifying candidates for combination regimens that could improve cytotoxicity and/or reduce the induction of resistance pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在胰腺导管腺癌临床前模型中,长效埃尔文菌 Pegcrisantaspase 可诱导交替氨基酸生物合成途径。
背景:胰腺导管腺癌(PDAC)是一种侵袭性疾病,除了首次抢救治疗外,没有其他有意义的治疗方案。通过限制氨基酸来靶向 PDAC 代谢已成为一种很有前景的新策略,天冬酰胺酶(一种消耗血浆谷氨酰胺和天冬酰胺的酶)已进入临床试验阶段。在这项研究中,我们研究了天冬酰胺酶制剂Pegcrisantaspase(PegC)单独或与标准化疗药物联合使用的抗PDAC活性:我们使用小鼠和人类 PDAC 细胞系评估了 PegC 对细胞增殖、细胞死亡和细胞周期进展的影响。我们进一步确定了 PegC 对蛋白质合成、活性氧生成和谷胱甘肽(一种主要的细胞抗氧化剂)水平的体外影响。其他细胞系研究还考察了 PegC 与标准化疗药物联合使用的效果。在体内,我们使用源自 C57BL/6 的 KPC 合成小鼠模型评估了 PegC 的耐受性和疗效以及对血浆氨基酸水平的影响:结果:我们在此报告,PegC 在一组人类和鼠类 PDAC 细胞系中表现出了强大的抗增殖活性。增殖的减少伴随着蛋白质合成的抑制和谷胱甘肽水平的降低。在体内,PegC 具有耐受性,并能有效降低血浆中谷氨酰胺和天冬酰胺的水平,从而在 PDAC 合成小鼠模型中显著抑制肿瘤生长。将 PegC 与标准化疗药物(包括奥沙利铂、伊立替康、5-氟尿嘧啶、紫杉醇和吉西他滨)联合使用,在体外或体内均无明显疗效。值得注意的是,PegC治疗增加了肿瘤中天冬酰胺和丝氨酸生物合成酶的表达:综上所述,我们的研究结果证明了PegC在PDAC中的潜在治疗作用,并强调了确定可提高细胞毒性和/或减少耐药途径诱导的候选联合方案的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
1.70%
发文量
17
审稿时长
14 weeks
期刊介绍: Cancer & Metabolism welcomes studies on all aspects of the relationship between cancer and metabolism, including: -Molecular biology and genetics of cancer metabolism -Whole-body metabolism, including diabetes and obesity, in relation to cancer -Metabolomics in relation to cancer; -Metabolism-based imaging -Preclinical and clinical studies of metabolism-related cancer therapies.
期刊最新文献
Glutaminolysis is associated with mitochondrial pathway activation and can be therapeutically targeted in glioblastoma. Complete inhibition of liver acetyl-CoA carboxylase activity is required to exacerbate liver tumorigenesis in mice treated with diethylnitrosamine. CYP19A1 regulates chemoresistance in colorectal cancer through modulation of estrogen biosynthesis and mitochondrial function. GCN2-SLC7A11 axis coordinates autophagy, cell cycle and apoptosis and regulates cell growth in retinoblastoma upon arginine deprivation. RHOF promotes Snail1 lactylation by enhancing PKM2-mediated glycolysis to induce pancreatic cancer cell endothelial-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1