{"title":"CFI: a VR motor rehabilitation serious game design framework integrating rehabilitation function and game design principles with an upper limb case.","authors":"Chengjie Zhang, Suiran Yu, Jiancheng Ji","doi":"10.1186/s12984-024-01373-2","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual reality (VR) Rehabilitation holds the potential to address the challenge that patients feel bored and give up long-term rehabilitation training. Despite the introduction of gaming elements by some researchers in rehabilitation training to enhance engagement, there remains a notable lack of in-depth research on VR rehabilitation serious game design methods, particularly the absence of a concrete design framework for VR rehabilitation serious games. Hence, we introduce the Clinical-Function-Interesting (CFI): a VR rehabilitation serious game design framework, harmonizing rehabilitation function and game design theories. The framework initiates with clinic information, defining game functions through the functional decomposition of rehabilitation training. Subsequently, it integrates gaming elements identified through the analysis and comparison of related literature to provide enduring support for long-term training. Furthermore, VR side-effect and enhancement are considered. Building upon this design framework, we have developed an upper limb VR rehabilitation serious game tailored for mild to moderate stroke patients and aligned our framework with another developed VR rehabilitation serious game to validate its practical feasibility. Overall, the proposed design framework offers a systematic VR rehabilitation serious game design methodology for the VR rehabilitation field, assisting developers in more accurately designing VR rehabilitation serious games that are tailored to specific rehabilitation goals.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":"21 1","pages":"113"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218288/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01373-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual reality (VR) Rehabilitation holds the potential to address the challenge that patients feel bored and give up long-term rehabilitation training. Despite the introduction of gaming elements by some researchers in rehabilitation training to enhance engagement, there remains a notable lack of in-depth research on VR rehabilitation serious game design methods, particularly the absence of a concrete design framework for VR rehabilitation serious games. Hence, we introduce the Clinical-Function-Interesting (CFI): a VR rehabilitation serious game design framework, harmonizing rehabilitation function and game design theories. The framework initiates with clinic information, defining game functions through the functional decomposition of rehabilitation training. Subsequently, it integrates gaming elements identified through the analysis and comparison of related literature to provide enduring support for long-term training. Furthermore, VR side-effect and enhancement are considered. Building upon this design framework, we have developed an upper limb VR rehabilitation serious game tailored for mild to moderate stroke patients and aligned our framework with another developed VR rehabilitation serious game to validate its practical feasibility. Overall, the proposed design framework offers a systematic VR rehabilitation serious game design methodology for the VR rehabilitation field, assisting developers in more accurately designing VR rehabilitation serious games that are tailored to specific rehabilitation goals.
期刊介绍:
Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.