Nitric Oxide/Glucose Transporter Type 4 Pathway Mediates Cardioprotection against Ischemia/Reperfusion Injury under Hyperglycemic and Diabetic Conditions in Rats.
{"title":"Nitric Oxide/Glucose Transporter Type 4 Pathway Mediates Cardioprotection against Ischemia/Reperfusion Injury under Hyperglycemic and Diabetic Conditions in Rats.","authors":"Aisha Al-Kouh, Fawzi Babiker","doi":"10.1159/000539461","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart.</p><p><strong>Methods: </strong>All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated.</p><p><strong>Results: </strong>Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size.</p><p><strong>Conclusions: </strong>The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"179-196"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000539461","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The comorbidities of ischemic heart disease (IHD) and diabetes mellitus (DM) compromise the protection of the diabetic heart from ischemia/reperfusion (I/R) injury. We hypothesized that manipulation of reperfusion injury salvage kinase (RISK) and survivor activating factor enhancement (SAFE) pathways might protect the diabetic heart, and intervention of these pathways could be a new avenue for potentially protecting the diabetic heart.
Methods: All hearts were subjected to 30-min ischemia and 30-min reperfusion. During reperfusion, hearts were exposed to molecules proven to protect the heart from I/R injury. The hemodynamic data were collected using suitable software. The infarct size, troponin T levels, and protein levels in hearts were evaluated.
Results: Both cyclosporine-A and nitric oxide donor (SNAP) infusion at reperfusion protected 4-week diabetic hearts from I/R injury. However, 6-week diabetic hearts were protected only by SNAP, but not cyclosporin-A. These treatments significantly (p < 0.05) improved cardiac hemodynamics and decreased infarct size.
Conclusions: The administration of SNAP to diabetic hearts protected both 4- and 6-week diabetic hearts; however, cyclosporine-A protected only the 4-week diabetic hearts. The eNOS/GLUT-4 pathway executed the SNAP-mediated cardioprotection.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.