Evasion of wheat resistance gene Lr15 recognition by the leaf rust fungus is attributed to the coincidence of natural mutations and deletion in AvrLr15 gene.

IF 4.8 1区 农林科学 Q1 PLANT SCIENCES Molecular plant pathology Pub Date : 2024-07-01 DOI:10.1111/mpp.13490
Zhongchi Cui, Songsong Shen, Linshuo Meng, Xizhe Sun, Yuqing Jin, Yuanxia Liu, Daqun Liu, Lisong Ma, Haiyan Wang
{"title":"Evasion of wheat resistance gene Lr15 recognition by the leaf rust fungus is attributed to the coincidence of natural mutations and deletion in AvrLr15 gene.","authors":"Zhongchi Cui, Songsong Shen, Linshuo Meng, Xizhe Sun, Yuqing Jin, Yuanxia Liu, Daqun Liu, Lisong Ma, Haiyan Wang","doi":"10.1111/mpp.13490","DOIUrl":null,"url":null,"abstract":"<p><p>Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.</p>","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"25 7","pages":"e13490"},"PeriodicalIF":4.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.13490","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Employing race-specific resistance genes remains an effective strategy to protect wheat from leaf rust caused by Puccinia triticina (Pt) worldwide, while the newly emerged Pt races, owing to rapid genetic evolution, frequently overcome the immune response delivered by race-specific resistance genes. The molecular mechanisms underlying the newly evolved virulence Pt pathogen remain unknown. Here, we identified an avirulence protein AvrLr15 from Pt that induced Lr15-dependent immune responses. Heterologously produced AvrLr15 triggered pronounced cell death in Lr15-isogenic wheat leaves. AvrLr15 contains a functional signal peptide, localized to the plant nucleus and cytosol and can suppress BAX-induced cell death. Evasion of Lr15-mediated resistance in wheat was associated with a deletion and point mutations of amino acids in AvrLr15 rather than AvrLr15 gene loss in the Lr15-breaking Pt races, implying that AvrLr15 is required for the virulence function of Pt. Our findings identified the first molecular determinant of wheat race-specific immunity and facilitated the identification of the first AVR/R gene pair in the Pt-wheat pathosystem, which will provide a molecular marker to monitor natural Pt populations and guide the deployment of Lr15-resistant wheat cultivars in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叶锈病真菌之所以能识别小麦抗性基因 Lr15,是因为 AvrLr15 基因发生了自然突变和缺失。
在全球范围内,使用种族特异性抗性基因仍然是保护小麦免受由三尖杉核菌(Pt)引起的叶锈病侵袭的有效策略,而新出现的 Pt 种族由于基因进化迅速,往往能克服种族特异性抗性基因所产生的免疫反应。新进化的具有毒力的 Pt 病原的分子机制仍然未知。在这里,我们从铂中发现了一种诱导 Lr15 依赖性免疫反应的无毒蛋白 AvrLr15。异源生产的 AvrLr15 会引发 Lr15 异源小麦叶片细胞的明显死亡。AvrLr15含有一个功能性信号肽,定位于植物细胞核和细胞质,可抑制BAX诱导的细胞死亡。在小麦中,Lr15介导的抗性的逃避与AvrLr15中氨基酸的缺失和点突变有关,而不是Lr15-breaking Pt株系中AvrLr15基因的缺失,这意味着AvrLr15是Pt毒力功能所必需的。我们的发现确定了小麦种族特异性免疫的第一个分子决定因素,并促进了铂-小麦病原系统中第一个 AVR/R 基因对的鉴定,这将为监测天然铂种群和指导抗 Lr15 小麦栽培品种的田间部署提供分子标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular plant pathology
Molecular plant pathology 生物-植物科学
CiteScore
9.40
自引率
4.10%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.
期刊最新文献
N Protein of Tomato Spotted Wilt Virus Proven to Be Antagonistic Against Tomato Yellow Leaf Curl Virus in Nicotiana benthamiana. Papain-Like Cysteine Proteases Contribute to Functional Cleavage of Begomoviral V2 Effector Required for Relevant Virulences. Apple Bitter Rot: Biology, Ecology, Omics, Virulence Factors, and Management of Causal Colletotrichum Species. Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein. Lrp Family Regulator SCAB_Lrp2 Responds to the Precursor Tryptophan and Represses the Thaxtomin Biosynthesis in Streptomyces scabies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1