Classifying and quantifying changes in papilloedema using machine learning.

IF 2.1 Q3 CLINICAL NEUROLOGY BMJ Neurology Open Pub Date : 2024-06-26 eCollection Date: 2024-01-01 DOI:10.1136/bmjno-2023-000503
Joseph Branco, Jui-Kai Wang, Tobias Elze, Mona K Garvin, Louis R Pasquale, Randy Kardon, Brian Woods, David Szanto, Mark J Kupersmith
{"title":"Classifying and quantifying changes in papilloedema using machine learning.","authors":"Joseph Branco, Jui-Kai Wang, Tobias Elze, Mona K Garvin, Louis R Pasquale, Randy Kardon, Brian Woods, David Szanto, Mark J Kupersmith","doi":"10.1136/bmjno-2023-000503","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning (ML) can differentiate papilloedema from normal optic discs using fundus photos. Currently, papilloedema severity is assessed using the descriptive, ordinal Frisén scale. We hypothesise that ML can quantify papilloedema and detect a treatment effect on papilloedema due to idiopathic intracranial hypertension.</p><p><strong>Methods: </strong>We trained a convolutional neural network to assign a Frisén grade to fundus photos taken from the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT). We applied modified subject-based fivefold cross-validation to grade 2979 longitudinal images from 158 participants' study eyes (ie, the eye with the worst mean deviation) in the IIHTT. Compared with the human expert-determined grades, we hypothesise that ML-estimated grades can also demonstrate differential changes over time in the IIHTT study eyes between the treatment (acetazolamide (ACZ) plus diet) and placebo (diet only) groups.</p><p><strong>Findings: </strong>The average ML-determined grade correlated strongly with the reference standard (r=0.76, p<0.001; mean absolute error=0.54). At the presentation, treatment groups had similar expert-determined and ML-determined Frisén grades. The average ML-determined grade for the ACZ group (1.7, 95% CI 1.5 to 1.8) was significantly lower (p=0.0003) than for the placebo group (2.3, 95% CI 2.0 to 2.5) at the 6-month trial outcome.</p><p><strong>Interpretation: </strong>Supervised ML of fundus photos quantified the degree of papilloedema and changes over time reflecting the effects of ACZ. Given the increasing availability of fundus photography, neurologists will be able to use ML to quantify papilloedema on a continuous scale that incorporates the features of the Frisén grade to monitor interventions.</p>","PeriodicalId":52754,"journal":{"name":"BMJ Neurology Open","volume":"6 1","pages":"e000503"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11216071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Neurology Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjno-2023-000503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Machine learning (ML) can differentiate papilloedema from normal optic discs using fundus photos. Currently, papilloedema severity is assessed using the descriptive, ordinal Frisén scale. We hypothesise that ML can quantify papilloedema and detect a treatment effect on papilloedema due to idiopathic intracranial hypertension.

Methods: We trained a convolutional neural network to assign a Frisén grade to fundus photos taken from the Idiopathic Intracranial Hypertension Treatment Trial (IIHTT). We applied modified subject-based fivefold cross-validation to grade 2979 longitudinal images from 158 participants' study eyes (ie, the eye with the worst mean deviation) in the IIHTT. Compared with the human expert-determined grades, we hypothesise that ML-estimated grades can also demonstrate differential changes over time in the IIHTT study eyes between the treatment (acetazolamide (ACZ) plus diet) and placebo (diet only) groups.

Findings: The average ML-determined grade correlated strongly with the reference standard (r=0.76, p<0.001; mean absolute error=0.54). At the presentation, treatment groups had similar expert-determined and ML-determined Frisén grades. The average ML-determined grade for the ACZ group (1.7, 95% CI 1.5 to 1.8) was significantly lower (p=0.0003) than for the placebo group (2.3, 95% CI 2.0 to 2.5) at the 6-month trial outcome.

Interpretation: Supervised ML of fundus photos quantified the degree of papilloedema and changes over time reflecting the effects of ACZ. Given the increasing availability of fundus photography, neurologists will be able to use ML to quantify papilloedema on a continuous scale that incorporates the features of the Frisén grade to monitor interventions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习对乳头水肿的变化进行分类和量化。
背景:机器学习(ML)可以利用眼底照片区分乳头水肿和正常视盘。目前,乳头水肿的严重程度是通过描述性、顺序性的弗里森量表来评估的。我们假设人工智能可以量化乳头水肿,并检测对特发性颅内高压引起的乳头水肿的治疗效果:我们训练了一个卷积神经网络,以便为特发性颅内高压治疗试验(IIHTT)中拍摄的眼底照片分配一个 Frisén 等级。我们采用修改后的基于受试者的五倍交叉验证方法,对 IIHTT 中 158 名参与者的研究眼(即平均偏差最差的眼)的 2979 张纵向图像进行了分级。与人类专家确定的等级相比,我们假设 ML 估算的等级也能显示 IIHTT 研究用眼在治疗组(乙酰唑胺(ACZ)加饮食)和安慰剂组(仅饮食)之间随时间的不同变化:结果:ML确定的平均等级与参考标准密切相关(r=0.76,p解释:对眼底照片进行有监督的ML量化了乳头水肿的程度和随时间的变化,反映了ACZ的效果。鉴于眼底照片的可用性越来越高,神经科医生将能够使用ML对乳头水肿进行连续量化,并结合Frisén分级的特点来监测干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMJ Neurology Open
BMJ Neurology Open Medicine-Neurology (clinical)
CiteScore
3.20
自引率
3.70%
发文量
46
审稿时长
13 weeks
期刊最新文献
Undiagnosed major risk factors in acute ischaemic stroke patients in Qatar: analysis from the Qatar stroke registry. Late-onset myopathy responsive to immunomodulatory treatment: sporadic late-onset nemaline myopathy without nemaline rods? Catatonia in anti-NMDA receptor encephalitis: a case series and approach to improve outcomes with electroconvulsive therapy. Analysis of door-to-needle time for thrombolysis in acute ischaemic stroke using statistical process control charts. Statins are rarely prescribed for incidentally discovered covert cerebrovascular disease: a retrospective cohort in a large electronic health record (EHR) identified using natural language processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1