Cellulose Film-Integrated Gold Nanoparticles Synthesized in Ionic Liquids for Heterogeneous Catalysis

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2024-06-19 DOI:10.1021/acsanm.4c02647
Camila Rodrigues Cabreira, Flavia Tavares da Silva and Fernanda F. Camilo*, 
{"title":"Cellulose Film-Integrated Gold Nanoparticles Synthesized in Ionic Liquids for Heterogeneous Catalysis","authors":"Camila Rodrigues Cabreira,&nbsp;Flavia Tavares da Silva and Fernanda F. Camilo*,&nbsp;","doi":"10.1021/acsanm.4c02647","DOIUrl":null,"url":null,"abstract":"<p >Taking advantage of the unique structural directionality of ionic liquids, we successfully synthesized highly concentrated gold nanoparticles (AuNPs) in 1-octyl-3-methylimidazolium chloride (OMImCl) using tetrabutylammonium borohydride (TBABH<sub>4</sub>) as the reducing agent. It is a distinctly different approach, avoiding additional capping agents and producing spherical AuNPs of approximately 10 nm diameter at varying concentrations. To prevent nanoparticle aggregation during catalytic reactions and enhance catalyst reusability, these AuNPs were immobilized in cellulose films. The film fabrication involved blending each AuNP dispersion with microcrystalline cellulose dissolved in 1-butyl-3-methylimidazolium chloride (BMImCl) and further water regeneration. Therefore, these films, containing up to 1.30% AuNPs, efficiently reduced 4-nitrophenol (4-NP) using sodium borohydride. Remarkably, the catalysts remained effective through five cycles without noticeable degradation. Compared to other methods, our catalysts displayed a higher turnover frequency (TOF), especially in films with lower gold content, due to their smaller particle size and uniform distribution. Our approach, avoiding the need for complex recovery processes typical of powder-based catalysts, offers an environmentally friendly, efficient, and reusable solution, emphasizing its potential for robust catalytic applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsanm.4c02647","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c02647","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Taking advantage of the unique structural directionality of ionic liquids, we successfully synthesized highly concentrated gold nanoparticles (AuNPs) in 1-octyl-3-methylimidazolium chloride (OMImCl) using tetrabutylammonium borohydride (TBABH4) as the reducing agent. It is a distinctly different approach, avoiding additional capping agents and producing spherical AuNPs of approximately 10 nm diameter at varying concentrations. To prevent nanoparticle aggregation during catalytic reactions and enhance catalyst reusability, these AuNPs were immobilized in cellulose films. The film fabrication involved blending each AuNP dispersion with microcrystalline cellulose dissolved in 1-butyl-3-methylimidazolium chloride (BMImCl) and further water regeneration. Therefore, these films, containing up to 1.30% AuNPs, efficiently reduced 4-nitrophenol (4-NP) using sodium borohydride. Remarkably, the catalysts remained effective through five cycles without noticeable degradation. Compared to other methods, our catalysts displayed a higher turnover frequency (TOF), especially in films with lower gold content, due to their smaller particle size and uniform distribution. Our approach, avoiding the need for complex recovery processes typical of powder-based catalysts, offers an environmentally friendly, efficient, and reusable solution, emphasizing its potential for robust catalytic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在离子液体中合成用于异相催化的纤维素膜集成金纳米粒子
利用离子液体独特的结构方向性,我们以四丁基硼氢化铵(TBABH4)为还原剂,在 1-辛基-3-甲基咪唑氯化物(OMImCl)中成功合成了高浓度金纳米粒子(AuNPs)。这是一种截然不同的方法,它避免了额外的封盖剂,并能在不同浓度下生成直径约为 10 纳米的球形 AuNPs。为了防止纳米粒子在催化反应过程中聚集并提高催化剂的重复使用性,这些 AuNPs 被固定在纤维素薄膜中。薄膜的制作包括将每种 AuNP 分散液与溶解在 1-丁基-3-甲基氯化咪唑(BMImCl)中的微晶纤维素混合,并进一步进行水再生。因此,这些含有高达 1.30% AuNPs 的薄膜能利用硼氢化钠有效地还原 4-硝基苯酚(4-NP)。值得注意的是,催化剂经过五个循环后仍然有效,没有出现明显的降解。与其他方法相比,我们的催化剂显示出更高的周转频率(TOF),特别是在金含量较低的薄膜中,这是因为它们的粒径较小,分布均匀。我们的方法避免了粉末型催化剂所特有的复杂回收过程,提供了一种环保、高效和可重复使用的解决方案,强调了其在强大催化应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
Role of Charge Accumulation in MoS2/Graphitic Carbon Nitride Nanostructures for Photocatalytic N2 Fixation Multimetallic Prussian Blue Analogue Nanoparticles for Oxygen Evolution Reaction and Efficient Benzyl Alcohol Oxidation Multiscale Lamellar Regulation of Three-Dimensional Graphene-like Nanostructures for Electromagnetic Interference Shielding and Thermal Management Semiconducting 2D Copper(I) Framework for Sub-ppb-Level Ammonia Sensing Superb Photo-Antibacterial/Antibiofilm Activities of BP/WS2 and BP/MoS2 Nanocomposites under Near-Infrared Irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1