Avish A. Kumar, Ioan V. Sanislav, Huiqing Huang, Paul H.G.M. Dirks
{"title":"Cassiterite trace element discrimination diagrams to facilitate critical mineral exploration","authors":"Avish A. Kumar, Ioan V. Sanislav, Huiqing Huang, Paul H.G.M. Dirks","doi":"10.1016/j.gexplo.2024.107530","DOIUrl":null,"url":null,"abstract":"<div><p>Cassiterite is a weathering-resistant mineral, which can incorporate a variety of trace elements. Trace elements in cassiterite samples collected from twelve deposits in the Herberton Mineral Field, Australia, were measured with the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results were combined with published data from other tin fields, including the Andean Sn belt in South America; the Karagwe Ankole belt in Rwanda; and, from China, the Kangxiwa-Dahongliutan pegmatite field, the Youjiang basin, the Nanling belt and the Da Hinggan Range belt. Tin deposits in the dataset can be subdivided into four deposit types: 1) greisen and veins; 2) skarns; 3) Li-Cs-Ta pegmatites; and 4) polymetallic veins. The cassiterite dataset was analyzed using basic descriptive statistics, principal component analysis (PCA), and cluster analysis. Cassiterite grains from greisen and vein deposits are characterized by high concentrations of Ti (avg. 1751 ppm) and moderate concentrations of Al (avg. 97 ppm), whereas cassiterite grains from skarn deposits generally contain lower concentrations of Ti and Al. Chemical compositional boundaries in cassiterite from different deposits were recognized with cluster analysis. The relative enrichment of Al and Ti in cassiterite grains from greisen and vein deposits is likely due to greisenization reactions. The Ti vs. Al diagram can be used to differentiate between cassiterite grains derived from greisen and vein deposits, as compared to cassiterite grains derived from skarn deposits, whereas Sb vs. V diagram can be used to differentiate between cassiterite grains from polymetallic vein deposits. Zirconium and Nb concentrations are useful in identifying cassiterite grains sourced from LCT pegmatite deposits. The discrimination diagrams developed in this study through cluster analysis indicate that cassiterite grains sourced from different deposit types can be differentiated based on their trace element geochemistry and this can be a useful tool in critical mineral exploration. Therefore, these diagrams can be used effectively to understand metal association and deposit types in a region with detrital cassiterite from stream sediments, till and heavy mineral placer deposits.</p></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375674224001468/pdfft?md5=fe66116318a15867e5ba7183a93ce7cd&pid=1-s2.0-S0375674224001468-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674224001468","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cassiterite is a weathering-resistant mineral, which can incorporate a variety of trace elements. Trace elements in cassiterite samples collected from twelve deposits in the Herberton Mineral Field, Australia, were measured with the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The results were combined with published data from other tin fields, including the Andean Sn belt in South America; the Karagwe Ankole belt in Rwanda; and, from China, the Kangxiwa-Dahongliutan pegmatite field, the Youjiang basin, the Nanling belt and the Da Hinggan Range belt. Tin deposits in the dataset can be subdivided into four deposit types: 1) greisen and veins; 2) skarns; 3) Li-Cs-Ta pegmatites; and 4) polymetallic veins. The cassiterite dataset was analyzed using basic descriptive statistics, principal component analysis (PCA), and cluster analysis. Cassiterite grains from greisen and vein deposits are characterized by high concentrations of Ti (avg. 1751 ppm) and moderate concentrations of Al (avg. 97 ppm), whereas cassiterite grains from skarn deposits generally contain lower concentrations of Ti and Al. Chemical compositional boundaries in cassiterite from different deposits were recognized with cluster analysis. The relative enrichment of Al and Ti in cassiterite grains from greisen and vein deposits is likely due to greisenization reactions. The Ti vs. Al diagram can be used to differentiate between cassiterite grains derived from greisen and vein deposits, as compared to cassiterite grains derived from skarn deposits, whereas Sb vs. V diagram can be used to differentiate between cassiterite grains from polymetallic vein deposits. Zirconium and Nb concentrations are useful in identifying cassiterite grains sourced from LCT pegmatite deposits. The discrimination diagrams developed in this study through cluster analysis indicate that cassiterite grains sourced from different deposit types can be differentiated based on their trace element geochemistry and this can be a useful tool in critical mineral exploration. Therefore, these diagrams can be used effectively to understand metal association and deposit types in a region with detrital cassiterite from stream sediments, till and heavy mineral placer deposits.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.