Plant-based bigel based on chickpea-potato protein hydrogel and glycerol monostearate oleogel

IF 5.6 3区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food Structure-Netherlands Pub Date : 2024-07-01 DOI:10.1016/j.foostr.2024.100378
Jovana Glusac , Shay Moguiliansky , Ayelet Fishman , Maya Davidovich-Pinhas
{"title":"Plant-based bigel based on chickpea-potato protein hydrogel and glycerol monostearate oleogel","authors":"Jovana Glusac ,&nbsp;Shay Moguiliansky ,&nbsp;Ayelet Fishman ,&nbsp;Maya Davidovich-Pinhas","doi":"10.1016/j.foostr.2024.100378","DOIUrl":null,"url":null,"abstract":"<div><p>The current research examines the effect of transglutaminase (TG) addition on novel bigel formulation based on a mixture of a chickpea-potato protein hydrogel and a glycerol monostearate (GMS)-oleogel processed using a hot emulsification procedure. Enzyme addition led to an increase in hardness and storage modulus values while similar melting behavior was found for both bigels with the main peak between 53–55 °C resulting from the GMS-oleogel melting. TGA thermograms of both bigels exhibited similar four weight-loss regions, with the control bigel having higher amount of bound water (∼56 %) compared to the TG-crosslinked bigel (∼50 %), which can be related to the higher stickiness of the control bigel. Confocal and cryo-HR-SEM imaging revealed the formation of a chickpea/potato protein network embedded with GMS oleogel droplets. Upon cooking, both bigels had crispy orange-brown surface with higher hardness and moderate browning due to the Maillard reaction.</p></div>","PeriodicalId":48640,"journal":{"name":"Food Structure-Netherlands","volume":"41 ","pages":"Article 100378"},"PeriodicalIF":5.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Structure-Netherlands","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213329124000145","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The current research examines the effect of transglutaminase (TG) addition on novel bigel formulation based on a mixture of a chickpea-potato protein hydrogel and a glycerol monostearate (GMS)-oleogel processed using a hot emulsification procedure. Enzyme addition led to an increase in hardness and storage modulus values while similar melting behavior was found for both bigels with the main peak between 53–55 °C resulting from the GMS-oleogel melting. TGA thermograms of both bigels exhibited similar four weight-loss regions, with the control bigel having higher amount of bound water (∼56 %) compared to the TG-crosslinked bigel (∼50 %), which can be related to the higher stickiness of the control bigel. Confocal and cryo-HR-SEM imaging revealed the formation of a chickpea/potato protein network embedded with GMS oleogel droplets. Upon cooking, both bigels had crispy orange-brown surface with higher hardness and moderate browning due to the Maillard reaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于鹰嘴豆-土豆蛋白水凝胶和单硬脂酸甘油酯油凝胶的植物基大凝胶
目前的研究探讨了添加转谷氨酰胺酶(TG)对基于鹰嘴豆-马铃薯蛋白水凝胶和单硬脂酸甘油酯(GMS)-烯醇凝胶混合物的新型 bigel 配方的影响。酶的加入导致硬度和储存模量值增加,同时发现两种大凝胶的熔化行为相似,GMS-油凝胶熔化产生的主峰在 53-55 °C 之间。两种bigel的TGA热图显示出相似的四个失重区域,与TG交联bigel(50%)相比,对照bigel的结合水含量更高(56%),这可能与对照bigel的粘性更高有关。共聚焦和低温-HR-SEM成像显示,鹰嘴豆/马铃薯蛋白网络与GMS油凝胶液滴相嵌。在烹饪过程中,由于发生了马氏反应,两种bigel的表面都呈脆橙棕色,硬度较高,褐变程度适中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food Structure-Netherlands
Food Structure-Netherlands Chemical Engineering-Bioengineering
CiteScore
7.20
自引率
0.00%
发文量
48
期刊介绍: Food Structure is the premier international forum devoted to the publication of high-quality original research on food structure. The focus of this journal is on food structure in the context of its relationship with molecular composition, processing and macroscopic properties (e.g., shelf stability, sensory properties, etc.). Manuscripts that only report qualitative findings and micrographs and that lack sound hypothesis-driven, quantitative structure-function research are not accepted. Significance of the research findings for the food science community and/or industry must also be highlighted.
期刊最新文献
Structural and in vitro starch digestion of wheat flour noodles by calcium mediated gelation of low methoxyl pectin Changes in the rheological, textural, microstructural and in vitro antioxidant properties of biscuit dough by incorporation of the extract and fiber-rich residue obtained through green extraction of defatted date seeds Quantifying the distribution of proteins at the interface of oil-in-water food emulsions Capillary flow-MRI of micronized fat crystal dispersions: Effect of shear history on microstructure and flow Impact of hydrocolloids on 3D meat analog printing and cooking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1