Multi-scale information transport generative adversarial network for human pose transfer

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Displays Pub Date : 2024-06-25 DOI:10.1016/j.displa.2024.102786
Jinsong Zhang , Yu-Kun Lai , Jian Ma , Kun Li
{"title":"Multi-scale information transport generative adversarial network for human pose transfer","authors":"Jinsong Zhang ,&nbsp;Yu-Kun Lai ,&nbsp;Jian Ma ,&nbsp;Kun Li","doi":"10.1016/j.displa.2024.102786","DOIUrl":null,"url":null,"abstract":"<div><p>Human pose transfer, a challenging image generation task, aims to transfer a source image from one pose to another. Existing methods often struggle to preserve details in visible regions or predict reasonable pixels for invisible regions due to inaccurate correspondences. In this paper, we design a novel multi-scale information transport generative adversarial network, composed of Information Transport (IT) blocks to establish and refine the correspondences progressively. Specifically, we compute a transport matrix to warp the source image features by integrating an optimal transport solver in our proposed IT block, and use IT blocks to refine the correspondences in different resolutions to preserve rich details of the source image features. The experimental results and applications demonstrate the effectiveness of our proposed method. We further present an image-specific optimization using only a single image. <em>The code is available for research purposes at</em> <span>https://github.com/Zhangjinso/OT-POSE</span><svg><path></path></svg>.</p></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"84 ","pages":"Article 102786"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938224001501","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Human pose transfer, a challenging image generation task, aims to transfer a source image from one pose to another. Existing methods often struggle to preserve details in visible regions or predict reasonable pixels for invisible regions due to inaccurate correspondences. In this paper, we design a novel multi-scale information transport generative adversarial network, composed of Information Transport (IT) blocks to establish and refine the correspondences progressively. Specifically, we compute a transport matrix to warp the source image features by integrating an optimal transport solver in our proposed IT block, and use IT blocks to refine the correspondences in different resolutions to preserve rich details of the source image features. The experimental results and applications demonstrate the effectiveness of our proposed method. We further present an image-specific optimization using only a single image. The code is available for research purposes at https://github.com/Zhangjinso/OT-POSE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于人体姿势转移的多尺度信息传输生成对抗网络
人体姿态转换是一项具有挑战性的图像生成任务,旨在将源图像从一种姿态转换到另一种姿态。由于对应关系不准确,现有方法往往难以保留可见区域的细节或预测不可见区域的合理像素。在本文中,我们设计了一种新颖的多尺度信息传输生成对抗网络,由信息传输(IT)模块组成,以逐步建立和完善对应关系。具体来说,我们通过在所提出的信息传输块中集成一个最优传输解算器来计算一个传输矩阵以扭曲源图像特征,并使用信息传输块在不同分辨率下细化对应关系以保留源图像特征的丰富细节。实验结果和应用证明了我们提出的方法的有效性。我们还进一步提出了一种仅使用单幅图像的特定图像优化方法。代码可在 https://github.com/Zhangjinso/OT-POSE 网站上获取,用于研究目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
期刊最新文献
Perceptually-calibrated synergy network for night-time image quality assessment with enhancement booster and knowledge cross-sharing Frequency-spatial interaction network for gaze estimation Orientation stabilization of light-controlling layers using liquid crystal polymers AdapSyn: Anomaly detection based on triplet training with adaptive anomaly synthesis 3D-MSFC: A 3D multi-scale features compression method for object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1