Room temperature deprotonation engineering for large-scale preparation of MIL-88B-like for efficient electromagnetic wave absorption

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-06-19 DOI:10.1016/j.carbon.2024.119369
Wenhui Zhu , Hongbao Zhu , Jun Liu , Jintang Zhou , Jiaqi Tao , Kexin Zou , Xuewei Tao , Yiming Lei , Zhengjun Yao , Zhitao Li , Yao Ma , Peijiang Liu , Hexia Huang , Zhong Li
{"title":"Room temperature deprotonation engineering for large-scale preparation of MIL-88B-like for efficient electromagnetic wave absorption","authors":"Wenhui Zhu ,&nbsp;Hongbao Zhu ,&nbsp;Jun Liu ,&nbsp;Jintang Zhou ,&nbsp;Jiaqi Tao ,&nbsp;Kexin Zou ,&nbsp;Xuewei Tao ,&nbsp;Yiming Lei ,&nbsp;Zhengjun Yao ,&nbsp;Zhitao Li ,&nbsp;Yao Ma ,&nbsp;Peijiang Liu ,&nbsp;Hexia Huang ,&nbsp;Zhong Li","doi":"10.1016/j.carbon.2024.119369","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs)-derived electromagnetic functional materials are a hot research trend in the field of microwave absorption (MA). However, there is a lack of high-yield strategies to drive high-performance MOFs-derived MA absorbers out of the laboratory. Herein, we prepared MIL-88B-like using a simple room-temperature liquid-phase method with more than 75 times the yield of the solvothermal method. The obtained MOFs were pyrolyzed to form C/FeO/FeN<sub>0.0324</sub>/Fe quaternary composite materials. Under suitable graphitizing conditions, the moderate conductivity of derivative material of M1 precursor carbonized at 700 °C (M1-700) not only meets the requirement of impedance matching but also provides high conduction loss. Meanwhile, the multiple polarization loss mechanisms from defect-induced polarization, dipole polarization, heterogeneous interfaces, and magnetic loss mechanism synergize with each other, resulting in an effective absorption bandwidth (EAB) of 6.71 GHz and a reflection loss (RL) value of −62.57 dB at 22.5 wt% filler, which is a 6-fold increase in the RL compared with that of the conventional MIL-88B-derived wave absorber. In conclusion, this work provides a feasible solution for practical absorbers and an excellent reference value for high MA performance materials for applications.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324005888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs)-derived electromagnetic functional materials are a hot research trend in the field of microwave absorption (MA). However, there is a lack of high-yield strategies to drive high-performance MOFs-derived MA absorbers out of the laboratory. Herein, we prepared MIL-88B-like using a simple room-temperature liquid-phase method with more than 75 times the yield of the solvothermal method. The obtained MOFs were pyrolyzed to form C/FeO/FeN0.0324/Fe quaternary composite materials. Under suitable graphitizing conditions, the moderate conductivity of derivative material of M1 precursor carbonized at 700 °C (M1-700) not only meets the requirement of impedance matching but also provides high conduction loss. Meanwhile, the multiple polarization loss mechanisms from defect-induced polarization, dipole polarization, heterogeneous interfaces, and magnetic loss mechanism synergize with each other, resulting in an effective absorption bandwidth (EAB) of 6.71 GHz and a reflection loss (RL) value of −62.57 dB at 22.5 wt% filler, which is a 6-fold increase in the RL compared with that of the conventional MIL-88B-derived wave absorber. In conclusion, this work provides a feasible solution for practical absorbers and an excellent reference value for high MA performance materials for applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大规模制备高效电磁波吸收的类 MIL-88B 的室温去质子化工程
金属有机框架(MOFs)衍生电磁功能材料是微波吸收(MA)领域的研究热点。然而,目前还缺乏将高性能 MOFs 衍生的 MA 吸收剂带出实验室的高产策略。在此,我们采用简单的室温液相法制备了类 MIL-88B,其产率是溶热法的 75 倍以上。热解得到的 MOFs 形成了 C/FeO/FeN0.0324/Fe 四元复合材料。在合适的石墨化条件下,在 700 °C 下碳化的 M1 前驱体衍生材料(M1-700)具有适中的导电性,不仅能满足阻抗匹配的要求,还能提供较高的传导损耗。同时,缺陷诱导极化、偶极子极化、异质界面和磁损耗机制等多重极化损耗机制相互协同,使得在填充量为 22.5 wt% 时,有效吸波带宽(EAB)为 6.71 GHz,反射损耗(RL)值为 -62.57 dB,与传统 MIL-88B 衍生吸波材料相比,RL 值提高了 6 倍。总之,这项工作为实用吸波材料提供了可行的解决方案,也为高 MA 性能材料的应用提供了极好的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Redox-active hydrogel electrolytes for carbon-based flexible supercapacitors over a wide temperature range New insights into the role of nitrogen doping in microporous carbon on the capacitive charge storage mechanism: from ab initio to machine learning accelerated molecular dynamics Mechanics of microblister tests in 2D materials accounting for frictional slippage Controllable preparation of carbon nanofiber membranes for enhanced flexibility and permeability Copper molybdenum sulfide coupled with multi-walled carbon nanotube nanocomposite for robust water splitting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1