Multi-interface spatial star-like MoC/Co/C composites toward enhanced electromagnetic wave absorption properties

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Carbon Pub Date : 2024-06-24 DOI:10.1016/j.carbon.2024.119390
Shuping Yu , Lixue Gai , Chunhua Tian , Li Zhu , Weikang Song , Bo Hu , Xijiang Han , Yunchen Du
{"title":"Multi-interface spatial star-like MoC/Co/C composites toward enhanced electromagnetic wave absorption properties","authors":"Shuping Yu ,&nbsp;Lixue Gai ,&nbsp;Chunhua Tian ,&nbsp;Li Zhu ,&nbsp;Weikang Song ,&nbsp;Bo Hu ,&nbsp;Xijiang Han ,&nbsp;Yunchen Du","doi":"10.1016/j.carbon.2024.119390","DOIUrl":null,"url":null,"abstract":"<div><p>Interfacial engineering and morphology design are two popular strategies to strengthen the performance of carbon-based composites as electromagnetic wave absorbing materials (EWAMs). Herein, we integrate their advantages simultaneously in ternary MoC/Co/C composites (SMCCs). On one hand, highly dispersed MoC and Co nanoparticles create abundant heterogeneous interfaces, and on the other hand, the spatial star-like carbon skeletons derived from ZnCo-MOF also bring significant structure contribution to EM energy consumption. EM measurement reveals that the pyrolysis temperature greatly impacts EM properties of SMCCs. After blending with paraffin (organic binder), the mixture that involves SMCC-800 (pyrolyzed at 800 °C) may have both good impedance matching degree and powerful EM attenuation ability. As a result, SMCC-800/paraffin displays excellent EM absorption performance, including strong reflection loss intensity down to −67.3 dB at 16.2 GHz (thickness: 1.8 mm) and broad response bandwidth of 6.0 GHz (12.0–18.0 GHz, thickness: 2.0 mm) less than −10.0 dB, which outdo the performance of many composites with similar chemical composition ever reported. The EM absorption mechanism of SMCC-800/paraffin is comprehensively illustrated through the investigation on EM properties of the mixtures with various control samples.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324006092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial engineering and morphology design are two popular strategies to strengthen the performance of carbon-based composites as electromagnetic wave absorbing materials (EWAMs). Herein, we integrate their advantages simultaneously in ternary MoC/Co/C composites (SMCCs). On one hand, highly dispersed MoC and Co nanoparticles create abundant heterogeneous interfaces, and on the other hand, the spatial star-like carbon skeletons derived from ZnCo-MOF also bring significant structure contribution to EM energy consumption. EM measurement reveals that the pyrolysis temperature greatly impacts EM properties of SMCCs. After blending with paraffin (organic binder), the mixture that involves SMCC-800 (pyrolyzed at 800 °C) may have both good impedance matching degree and powerful EM attenuation ability. As a result, SMCC-800/paraffin displays excellent EM absorption performance, including strong reflection loss intensity down to −67.3 dB at 16.2 GHz (thickness: 1.8 mm) and broad response bandwidth of 6.0 GHz (12.0–18.0 GHz, thickness: 2.0 mm) less than −10.0 dB, which outdo the performance of many composites with similar chemical composition ever reported. The EM absorption mechanism of SMCC-800/paraffin is comprehensively illustrated through the investigation on EM properties of the mixtures with various control samples.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强电磁波吸收特性的多界面空间星状 MoC/Co/C 复合材料
界面工程和形态设计是增强碳基复合材料作为电磁波吸收材料(EWAM)性能的两种常用策略。在这里,我们将它们的优势同时整合到 MoC/Co/C 三元复合材料(SMCCs)中。一方面,高度分散的 MoC 和 Co 纳米粒子创造了丰富的异质界面,另一方面,ZnCo-MOF 衍生出的空间星状碳骨架也为电磁能耗带来了重要的结构贡献。电磁测量显示,热解温度对 SMCC 的电磁特性有很大影响。与石蜡(有机粘合剂)混合后,SMCC-800(在 800 ℃ 高温下热解)的混合物可能具有良好的阻抗匹配度和强大的电磁衰减能力。因此,SMCC-800/石蜡显示出优异的电磁吸收性能,包括在 16.2 GHz(厚度:1.8 mm)时低至 -67.3 dB 的强反射损耗强度和小于 -10.0 dB 的 6.0 GHz(12.0-18.0 GHz,厚度:2.0 mm)宽响应带宽,这些性能超过了许多具有类似化学成分的复合材料。通过研究 SMCC-800/ 石蜡混合物与各种对照样品的电磁特性,全面说明了 SMCC-800/ 石蜡的电磁吸收机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
期刊最新文献
Redox-active hydrogel electrolytes for carbon-based flexible supercapacitors over a wide temperature range New insights into the role of nitrogen doping in microporous carbon on the capacitive charge storage mechanism: from ab initio to machine learning accelerated molecular dynamics Mechanics of microblister tests in 2D materials accounting for frictional slippage Controllable preparation of carbon nanofiber membranes for enhanced flexibility and permeability Copper molybdenum sulfide coupled with multi-walled carbon nanotube nanocomposite for robust water splitting process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1