Current density alters the mechanical stresses during electrodeposition of lithium metal anodes

IF 4.3 3区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Extreme Mechanics Letters Pub Date : 2024-06-27 DOI:10.1016/j.eml.2024.102186
Jungho Shin, Matt Pharr
{"title":"Current density alters the mechanical stresses during electrodeposition of lithium metal anodes","authors":"Jungho Shin,&nbsp;Matt Pharr","doi":"10.1016/j.eml.2024.102186","DOIUrl":null,"url":null,"abstract":"<div><p>“Lithium metal” batteries operate via electroplating/stripping of Li metal and promise vast theoretical capacities. However, significant technical barriers must be addressed prior to commercialization. The primary challenges include the generation of mechanical stresses and strains due to \"infinite volume expansion,” as well as non-uniform deposition of lithium metal, which often leads to dendrite formation and growth. Lithium dendrite formation is particularly critical, as dendrites can penetrate solid-state electrolytes, eventually shorting to the cathode, thereby diminishing the capacity of the battery and inducing severe safety hazards. These primary issues are intrinsically linked to the mechanical behavior of lithium; as such, this study focuses on the mechanical response of lithium electrodeposition under various electrochemical conditions. Experimental tests herein reveal that larger applied current densities induce significantly larger mechanical stresses during electroplating of Li metal. This manuscript concludes by detailing practical implications of these experimental observations, particularly regarding dendrite growth through solid-state electrolytes of solid-state batteries.</p></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"70 ","pages":"Article 102186"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235243162400066X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

“Lithium metal” batteries operate via electroplating/stripping of Li metal and promise vast theoretical capacities. However, significant technical barriers must be addressed prior to commercialization. The primary challenges include the generation of mechanical stresses and strains due to "infinite volume expansion,” as well as non-uniform deposition of lithium metal, which often leads to dendrite formation and growth. Lithium dendrite formation is particularly critical, as dendrites can penetrate solid-state electrolytes, eventually shorting to the cathode, thereby diminishing the capacity of the battery and inducing severe safety hazards. These primary issues are intrinsically linked to the mechanical behavior of lithium; as such, this study focuses on the mechanical response of lithium electrodeposition under various electrochemical conditions. Experimental tests herein reveal that larger applied current densities induce significantly larger mechanical stresses during electroplating of Li metal. This manuscript concludes by detailing practical implications of these experimental observations, particularly regarding dendrite growth through solid-state electrolytes of solid-state batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电流密度改变锂金属阳极电沉积过程中的机械应力
"锂金属 "电池通过电镀/剥离锂金属进行工作,理论容量巨大。然而,在实现商业化之前,必须解决重大的技术障碍。主要挑战包括由于 "无限体积膨胀 "而产生的机械应力和应变,以及锂金属的不均匀沉积,这通常会导致枝晶的形成和生长。锂枝晶的形成尤为关键,因为枝晶可渗透固态电解质,最终与阴极短路,从而降低电池容量并引发严重的安全隐患。这些主要问题与锂的机械行为有着内在联系;因此,本研究重点关注各种电化学条件下锂电沉积的机械响应。实验测试表明,在电镀锂金属的过程中,较大的电流密度会引起明显较大的机械应力。本手稿最后详细介绍了这些实验观察结果的实际意义,特别是通过固态电池的固态电解质生长树枝状晶粒方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Extreme Mechanics Letters
Extreme Mechanics Letters Engineering-Mechanics of Materials
CiteScore
9.20
自引率
4.30%
发文量
179
审稿时长
45 days
期刊介绍: Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.
期刊最新文献
Origami electronic membranes as highly shape-morphable mechanical and environmental sensing systems Atomic insights into the ductile–brittle competition of cracks under dissolution A large atomic partition model for materials discovery A model for micro-scale propulsion using flexible rotating flagella Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1