{"title":"A recommendation approach of scientific non-patent literature on the basis of heterogeneous information network","authors":"Shuo Xu , Xinyi Ma , Hong Wang , Xin An , Ling Li","doi":"10.1016/j.joi.2024.101557","DOIUrl":null,"url":null,"abstract":"<div><p>In the procedure of exploring science-technology linkages, <em>non-patent literature</em> (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.</p></div>","PeriodicalId":48662,"journal":{"name":"Journal of Informetrics","volume":"18 4","pages":"Article 101557"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Informetrics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000701","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the procedure of exploring science-technology linkages, non-patent literature (NPL) in patents, particularly scientific NPL, is considered to signal the relatedness between the developed technology and the cited science. However, many prior art search tools may not be powered with the cross-collection recommendation technique, or have limited cross-collection recommendation capabilities. In this paper, we present an approach to recommend scientific NPL for a focal patent on the basis of heterogeneous information network. This study views this cross-collection recommendation problem as a link prediction problem on the basis of meta-path counting approach. Extensive experiments on DrugBank dataset in the pharmaceutical field indicate that our approach is feasible and effective. This work provides a novel perspective on scientific NPL recommendation for a focal patent and opens up further possibilities for the linkages between science and technology. Nevertheless, more experiments in other fields are required to verify the recommended effects of the approach proposed in this study.
期刊介绍:
Journal of Informetrics (JOI) publishes rigorous high-quality research on quantitative aspects of information science. The main focus of the journal is on topics in bibliometrics, scientometrics, webometrics, patentometrics, altmetrics and research evaluation. Contributions studying informetric problems using methods from other quantitative fields, such as mathematics, statistics, computer science, economics and econometrics, and network science, are especially encouraged. JOI publishes both theoretical and empirical work. In general, case studies, for instance a bibliometric analysis focusing on a specific research field or a specific country, are not considered suitable for publication in JOI, unless they contain innovative methodological elements.