Probabilistic analysis of homogenized elastic property for resin products fabricated by additive manufacturing based on three-dimensional random field modeling of microstructure
{"title":"Probabilistic analysis of homogenized elastic property for resin products fabricated by additive manufacturing based on three-dimensional random field modeling of microstructure","authors":"Sei-ichiro Sakata , George Stefanou , Takayoshi Kikkawa , Yuki Aikawa","doi":"10.1016/j.mechmat.2024.105071","DOIUrl":null,"url":null,"abstract":"<div><p>Additive manufacturing (AM) techniques have been used in several fields of science and industry, and fabrication techniques are being updated. For this fact, especially, for industrial use, mechanical property evaluation methodologies for AM products and standards for product quality assessment should also be well established. In this paper, a probabilistic evaluation of the homogenized elastic properties of a resin product fabricated by a material extrusion-based AM technique is attempted by considering the randomness of both material and microscopic geometrical quantities. This AM method fabricates a resin structure by piling up melted resin, and to decrease consumed material and influence of thermal deformation, the inner structure of the fabricated products will include many pores and its geometry is difficult to be well controlled. From this fact, the products will be regarded as a heterogeneous material with complex random microstructure. This will cause difficulty in the evaluation of its apparent material properties and therefore a probabilistic homogenization analysis is attempted for their quantitative estimation in this study. In particular, to investigate probabilistic properties of microscopic geometry, a random field modeling technique is employed for the evaluation of autocorrelation of the microscopic geometrical parameter, and the results of the autocorrelation identified by experimental observation are introduced to the probabilistic homogenization analysis. The two-dimensional or three-dimensional random field modeling is attempted, and the effectiveness of this approach is investigated by comparing it with the experimental result.</p></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624001637","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) techniques have been used in several fields of science and industry, and fabrication techniques are being updated. For this fact, especially, for industrial use, mechanical property evaluation methodologies for AM products and standards for product quality assessment should also be well established. In this paper, a probabilistic evaluation of the homogenized elastic properties of a resin product fabricated by a material extrusion-based AM technique is attempted by considering the randomness of both material and microscopic geometrical quantities. This AM method fabricates a resin structure by piling up melted resin, and to decrease consumed material and influence of thermal deformation, the inner structure of the fabricated products will include many pores and its geometry is difficult to be well controlled. From this fact, the products will be regarded as a heterogeneous material with complex random microstructure. This will cause difficulty in the evaluation of its apparent material properties and therefore a probabilistic homogenization analysis is attempted for their quantitative estimation in this study. In particular, to investigate probabilistic properties of microscopic geometry, a random field modeling technique is employed for the evaluation of autocorrelation of the microscopic geometrical parameter, and the results of the autocorrelation identified by experimental observation are introduced to the probabilistic homogenization analysis. The two-dimensional or three-dimensional random field modeling is attempted, and the effectiveness of this approach is investigated by comparing it with the experimental result.
快速成型制造(AM)技术已在多个科学和工业领域得到应用,其制造技术也在不断更新。因此,特别是在工业应用中,应建立完善的 AM 产品机械性能评估方法和产品质量评估标准。本文通过考虑材料和微观几何量的随机性,尝试对基于材料挤压的 AM 技术制造的树脂产品的均质弹性特性进行概率评估。这种 AM 方法通过堆积熔化的树脂来制造树脂结构,为了减少材料消耗和热变形的影响,制造产品的内部结构将包括许多孔隙,其几何形状难以很好地控制。因此,产品将被视为具有复杂随机微观结构的异质材料。这将给评估其表观材料特性带来困难,因此本研究尝试采用概率均质化分析方法对其进行定量评估。其中,为了研究微观几何的概率特性,采用了随机场建模技术来评估微观几何参数的自相关性,并将实验观察所确定的自相关性结果引入概率均质化分析。尝试了二维或三维随机场建模,并通过与实验结果的比较研究了这种方法的有效性。
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.