Amir Hashemi , Mahshid Mirhashemi , Werner M. Seiler
{"title":"Machine learning parameter systems, Noether normalisations and quasi-stable positions","authors":"Amir Hashemi , Mahshid Mirhashemi , Werner M. Seiler","doi":"10.1016/j.jsc.2024.102345","DOIUrl":null,"url":null,"abstract":"<div><p>We discuss the use of machine learning models for finding “good coordinates” for polynomial ideals. Our main goal is to put ideals into quasi-stable position, as this generic position shares most properties of the generic initial ideal, but can be deterministically reached and verified. Furthermore, it entails a Noether normalisation and provides us with a system of parameters. Traditional approaches use either random choices which typically destroy all sparsity or rather simple human heuristics which are only moderately successful. Our experiments show that machine learning models provide us here with interesting alternatives that most of the time make nearly optimal choices.</p></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"126 ","pages":"Article 102345"},"PeriodicalIF":0.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S074771712400049X/pdfft?md5=ecbd0dd906bdab6ee43183876959d620&pid=1-s2.0-S074771712400049X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S074771712400049X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We discuss the use of machine learning models for finding “good coordinates” for polynomial ideals. Our main goal is to put ideals into quasi-stable position, as this generic position shares most properties of the generic initial ideal, but can be deterministically reached and verified. Furthermore, it entails a Noether normalisation and provides us with a system of parameters. Traditional approaches use either random choices which typically destroy all sparsity or rather simple human heuristics which are only moderately successful. Our experiments show that machine learning models provide us here with interesting alternatives that most of the time make nearly optimal choices.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.