Theoretical and experimental investigation on gearbox vibration signal separation of planetary gear set

IF 4.5 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanism and Machine Theory Pub Date : 2024-06-27 DOI:10.1016/j.mechmachtheory.2024.105723
Shunan Luo , Yinbo Wang , He Dai , Xinhua Long , Zhike Peng
{"title":"Theoretical and experimental investigation on gearbox vibration signal separation of planetary gear set","authors":"Shunan Luo ,&nbsp;Yinbo Wang ,&nbsp;He Dai ,&nbsp;Xinhua Long ,&nbsp;Zhike Peng","doi":"10.1016/j.mechmachtheory.2024.105723","DOIUrl":null,"url":null,"abstract":"<div><p>The gearbox vibration signal of a planetary gear set contains multiple components caused by different excitations. Separating the gearbox vibration signal to decouple its components can provide core information for operational status monitoring. In this paper, we propose an indirect gearbox vibration signal separation method based on parameter identification. A novel vibration signal model is established using the modal shape of ring gear. A parameter identification method is adopted to determine the parameters of the vibration signal model. The vibration signal components are reconstructed based on the vibration signal model and identified parameters. To evaluate the performance of the proposed method, a ring gear response calculation method derived from the elastic theory of ring gear is presented. The influences of unequal load sharing and meshing position errors on vibration signals are studied through numerical simulations using the calculation method. Experiments are conducted in a planetary gear set test rig. Comparisons between the experimental results obtained by the separation and calculation methods indicate the effectiveness of the proposed separation method.</p></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X24001502","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The gearbox vibration signal of a planetary gear set contains multiple components caused by different excitations. Separating the gearbox vibration signal to decouple its components can provide core information for operational status monitoring. In this paper, we propose an indirect gearbox vibration signal separation method based on parameter identification. A novel vibration signal model is established using the modal shape of ring gear. A parameter identification method is adopted to determine the parameters of the vibration signal model. The vibration signal components are reconstructed based on the vibration signal model and identified parameters. To evaluate the performance of the proposed method, a ring gear response calculation method derived from the elastic theory of ring gear is presented. The influences of unequal load sharing and meshing position errors on vibration signals are studied through numerical simulations using the calculation method. Experiments are conducted in a planetary gear set test rig. Comparisons between the experimental results obtained by the separation and calculation methods indicate the effectiveness of the proposed separation method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
行星齿轮组变速箱振动信号分离的理论与实验研究
行星齿轮组的齿轮箱振动信号包含由不同激励引起的多个分量。分离齿轮箱振动信号以解耦其成分可为运行状态监测提供核心信息。本文提出了一种基于参数识别的间接齿轮箱振动信号分离方法。利用环形齿轮的模态形状建立了一个新的振动信号模型。采用参数识别方法确定振动信号模型的参数。根据振动信号模型和确定的参数重建振动信号成分。为了评估所提出方法的性能,介绍了一种由环形齿轮弹性理论推导出的环形齿轮响应计算方法。通过使用该计算方法进行数值模拟,研究了不平等负载分担和啮合位置误差对振动信号的影响。实验是在行星齿轮组试验台架上进行的。通过比较分离法和计算法得出的实验结果表明了所提出的分离法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanism and Machine Theory
Mechanism and Machine Theory 工程技术-工程:机械
CiteScore
9.90
自引率
23.10%
发文量
450
审稿时长
20 days
期刊介绍: Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal. The main topics are: Design Theory and Methodology; Haptics and Human-Machine-Interfaces; Robotics, Mechatronics and Micro-Machines; Mechanisms, Mechanical Transmissions and Machines; Kinematics, Dynamics, and Control of Mechanical Systems; Applications to Bioengineering and Molecular Chemistry
期刊最新文献
Optimizing natural frequencies in compliant mechanisms through geometric scaling Transmission angle of planar four-bar linkages applicable for different input-output links subject to external loads A comprehensive study of the effect of thermal deformation on the dynamic characteristics of the high-speed spindle unit with various preload forces Oriblock: The origami-blocks based on hinged dissection Design and optimization of a planar anti-buckling compliant rotational joint with a remote center of motion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1