Hongjie Pang , Jun Cheng , Huaicheng Yan , Dan Zhang , Wenhai Qi
{"title":"Asynchronous model predictive control of LPV systems with stochastic communication protocol","authors":"Hongjie Pang , Jun Cheng , Huaicheng Yan , Dan Zhang , Wenhai Qi","doi":"10.1016/j.nahs.2024.101522","DOIUrl":null,"url":null,"abstract":"<div><p>This study is dedicated to exploring the challenge of asynchronous resilient robust model predictive control (RMPC) for linear parameter-varying (LPV) systems operating under a stochastic communication protocol (SCP). In contrast to the conventional Markov-based SCP, a novel sojourn probability-based SCP is introduced to regulate packet transmissions. This innovative approach simplifies the determination of transition probabilities and lessens the computational burden. Acknowledging the challenges associated with observing sojourn probability information, a mode detector is employed to describe the connection between mode discrepancies. To address parameter uncertainties, a novel detected-mode-based resilient control law is formulated to ensure the mean-square stability of the LPV system within the resilient RMPC framework. Additionally, an online algorithm for resilient RMPC is presented, grounded in an auxiliary optimization problem. Ultimately, the effectiveness of the proposed control strategy is validated via a high-purity distillation process model.</p></div>","PeriodicalId":49011,"journal":{"name":"Nonlinear Analysis-Hybrid Systems","volume":"54 ","pages":"Article 101522"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Hybrid Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751570X24000591","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study is dedicated to exploring the challenge of asynchronous resilient robust model predictive control (RMPC) for linear parameter-varying (LPV) systems operating under a stochastic communication protocol (SCP). In contrast to the conventional Markov-based SCP, a novel sojourn probability-based SCP is introduced to regulate packet transmissions. This innovative approach simplifies the determination of transition probabilities and lessens the computational burden. Acknowledging the challenges associated with observing sojourn probability information, a mode detector is employed to describe the connection between mode discrepancies. To address parameter uncertainties, a novel detected-mode-based resilient control law is formulated to ensure the mean-square stability of the LPV system within the resilient RMPC framework. Additionally, an online algorithm for resilient RMPC is presented, grounded in an auxiliary optimization problem. Ultimately, the effectiveness of the proposed control strategy is validated via a high-purity distillation process model.
期刊介绍:
Nonlinear Analysis: Hybrid Systems welcomes all important research and expository papers in any discipline. Papers that are principally concerned with the theory of hybrid systems should contain significant results indicating relevant applications. Papers that emphasize applications should consist of important real world models and illuminating techniques. Papers that interrelate various aspects of hybrid systems will be most welcome.