Optimizing heterogeneous elastic material distributions on 3D models

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer-Aided Design Pub Date : 2024-06-25 DOI:10.1016/j.cad.2024.103748
Haoxiang Li , Wenjing Zhang , Jianmin Zheng , Edward Dale Davis , Jun Zeng
{"title":"Optimizing heterogeneous elastic material distributions on 3D models","authors":"Haoxiang Li ,&nbsp;Wenjing Zhang ,&nbsp;Jianmin Zheng ,&nbsp;Edward Dale Davis ,&nbsp;Jun Zeng","doi":"10.1016/j.cad.2024.103748","DOIUrl":null,"url":null,"abstract":"<div><p>Optimizing heterogeneous elastic material distribution on a 3D part to achieve desired deformation behavior is an important task in computer-aided design and additive manufacturing. This paper presents a solution to this problem, which involves interactive design, automatic deformation generation, and optimization of spatial distribution of heterogeneous elastic materials. Our method improves previous techniques in three aspects. First, we incorporates a geometric deformation-based interactive design into FEM-based optimization, which makes the solution less dependent of initial guesses of Young’s modulus values and it more likely to produce the target design even with sparse user input of displacements and forces at a limited set of mesh vertices. Second, we formulate the problem as an <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>- or <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>-optimization problem. The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> formulation outputs smoothly varying heterogeneous material distribution that accommodates multiple functions within a single part. The <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> formulation achieves the computation of sparse material distribution in one step, which is beneficial for additive manufacturing with multi-material printers. Third, we utilize the adjoint method to derive formulae for efficiently computing the gradient of the objective functions, making it possible to quickly solve the optimization problem in the full-dimensional space of materials, which was previously infeasible. The experiments demonstrate the robustness and efficiency of our approach.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"175 ","pages":"Article 103748"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000757","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Optimizing heterogeneous elastic material distribution on a 3D part to achieve desired deformation behavior is an important task in computer-aided design and additive manufacturing. This paper presents a solution to this problem, which involves interactive design, automatic deformation generation, and optimization of spatial distribution of heterogeneous elastic materials. Our method improves previous techniques in three aspects. First, we incorporates a geometric deformation-based interactive design into FEM-based optimization, which makes the solution less dependent of initial guesses of Young’s modulus values and it more likely to produce the target design even with sparse user input of displacements and forces at a limited set of mesh vertices. Second, we formulate the problem as an L2- or L0-optimization problem. The L2 formulation outputs smoothly varying heterogeneous material distribution that accommodates multiple functions within a single part. The L0 formulation achieves the computation of sparse material distribution in one step, which is beneficial for additive manufacturing with multi-material printers. Third, we utilize the adjoint method to derive formulae for efficiently computing the gradient of the objective functions, making it possible to quickly solve the optimization problem in the full-dimensional space of materials, which was previously infeasible. The experiments demonstrate the robustness and efficiency of our approach.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化三维模型上的异质弹性材料分布
优化三维零件上的异质弹性材料分布以实现理想的变形行为是计算机辅助设计和增材制造中的一项重要任务。本文提出了这一问题的解决方案,其中包括交互式设计、自动变形生成和优化异质弹性材料的空间分布。我们的方法在三个方面改进了以往的技术。首先,我们在基于有限元的优化中加入了基于几何变形的交互式设计,从而降低了解决方案对杨氏模量值的初始猜测的依赖性,即使用户在有限的网格顶点处输入稀少的位移和力,也更有可能生成目标设计。其次,我们将问题表述为 L2 或 L0 优化问题。L2 公式可输出平滑变化的异质材料分布,从而在单个零件中实现多种功能。L0 公式可在一个步骤中计算稀疏材料分布,这有利于使用多材料打印机的增材制造。第三,我们利用邻接法推导出了有效计算目标函数梯度的公式,使得在材料的全维空间内快速解决优化问题成为可能,而这在以前是不可行的。实验证明了我们方法的稳健性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer-Aided Design
Computer-Aided Design 工程技术-计算机:软件工程
CiteScore
5.50
自引率
4.70%
发文量
117
审稿时长
4.2 months
期刊介绍: Computer-Aided Design is a leading international journal that provides academia and industry with key papers on research and developments in the application of computers to design. Computer-Aided Design invites papers reporting new research, as well as novel or particularly significant applications, within a wide range of topics, spanning all stages of design process from concept creation to manufacture and beyond.
期刊最新文献
Editorial Board Plate Manufacturing Constraint in Topology Optimization Using Anisotropic Filter Feature-aware Singularity Structure Optimization for Hex Mesh Fast algorithm for extracting domains and regions from three-dimensional triangular surface meshes Higher-degrees Hybrid Non-uniform Subdivision Surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1