{"title":"AFTLNet: An efficient adaptive forgery traces learning network for deep image inpainting localization","authors":"Xiangling Ding, Yingqian Deng, Yulin Zhao, Wenyi Zhu","doi":"10.1016/j.jisa.2024.103825","DOIUrl":null,"url":null,"abstract":"<div><p>Deep-learning-based image inpainting repairs a region with visually believable content, leaving behind imperceptible traces. Since deep image inpainting approaches can malevolently remove key objects and erase visible copyright watermarks, the desire for an effective method to distinguish the inpainted regions has become urgent. In this work, we propose an adaptive forgery trace learning network (AFTLN), which consists of two subblocks: the adaptive block and the Densenet block. Specifically, the adaptive block exploits an adaptive difference convolution to maximize the forgery traces by iteratively updating its weights. Meanwhile, the Densenet block improves the feature weights and reduces the impact of noise on the forgery traces. An image-inpainting detector, namely AFTLNet, is designed by integrating AFTLN with neural architecture search, and global and local attention modules, which aims to find potential tampered regions, enhance feature consistency, and reduce intra-class differences, respectively. The experimental results present that our proposed AFTLNet exceeds existing inpainting detection approaches. Finally, an inpainting dataset of 26K image pairs is constructed for future research. The dataset is available at <span>https://pan.baidu.com/s/10SRJeQBNnTHJXvxl8xzHcg</span><svg><path></path></svg> with password: 1234.</p></div>","PeriodicalId":48638,"journal":{"name":"Journal of Information Security and Applications","volume":"84 ","pages":"Article 103825"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Security and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214212624001285","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep-learning-based image inpainting repairs a region with visually believable content, leaving behind imperceptible traces. Since deep image inpainting approaches can malevolently remove key objects and erase visible copyright watermarks, the desire for an effective method to distinguish the inpainted regions has become urgent. In this work, we propose an adaptive forgery trace learning network (AFTLN), which consists of two subblocks: the adaptive block and the Densenet block. Specifically, the adaptive block exploits an adaptive difference convolution to maximize the forgery traces by iteratively updating its weights. Meanwhile, the Densenet block improves the feature weights and reduces the impact of noise on the forgery traces. An image-inpainting detector, namely AFTLNet, is designed by integrating AFTLN with neural architecture search, and global and local attention modules, which aims to find potential tampered regions, enhance feature consistency, and reduce intra-class differences, respectively. The experimental results present that our proposed AFTLNet exceeds existing inpainting detection approaches. Finally, an inpainting dataset of 26K image pairs is constructed for future research. The dataset is available at https://pan.baidu.com/s/10SRJeQBNnTHJXvxl8xzHcg with password: 1234.
期刊介绍:
Journal of Information Security and Applications (JISA) focuses on the original research and practice-driven applications with relevance to information security and applications. JISA provides a common linkage between a vibrant scientific and research community and industry professionals by offering a clear view on modern problems and challenges in information security, as well as identifying promising scientific and "best-practice" solutions. JISA issues offer a balance between original research work and innovative industrial approaches by internationally renowned information security experts and researchers.