Machine learning-enhanced optimal catalyst selection for water-gas shift reaction

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-06-24 DOI:10.1016/j.dche.2024.100165
Rahul Golder , Shraman Pal , Sathish Kumar C., Koustuv Ray
{"title":"Machine learning-enhanced optimal catalyst selection for water-gas shift reaction","authors":"Rahul Golder ,&nbsp;Shraman Pal ,&nbsp;Sathish Kumar C.,&nbsp;Koustuv Ray","doi":"10.1016/j.dche.2024.100165","DOIUrl":null,"url":null,"abstract":"<div><p>The water-gas shift (WGS) reaction is pivotal in industries aiming to convert carbon monoxide, a byproduct of steam reforming of methane and other hydrocarbons, into carbon dioxide and hydrogen. Selecting an effective catalyst for this transformation poses a substantial challenge, as it requires a delicate balance between conversion, stability, and cost. We combine machine learning-driven prediction models with Bayesian optimization to explore and identify novel catalyst compositions. The proposed method efficiently explores the catalysis composition space for a predefined set of active metals, supports, and promoters to identify the most promising catalyst formulations. We assign weights to different performance metrics of catalysts, enabling tailored optimization according to specific industry needs. Our screening system streamlines catalyst discovery and facilitates the screening and selection of catalysts that balance conversion performance, stability, and cost-effectiveness. This approach holds significant promise for advancement in heterogeneous catalysis to meet the growing demands of efficient industrial processes.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"12 ","pages":"Article 100165"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772508124000279/pdfft?md5=d5645784b63ce9c4b3a4836dc9361cd6&pid=1-s2.0-S2772508124000279-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772508124000279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The water-gas shift (WGS) reaction is pivotal in industries aiming to convert carbon monoxide, a byproduct of steam reforming of methane and other hydrocarbons, into carbon dioxide and hydrogen. Selecting an effective catalyst for this transformation poses a substantial challenge, as it requires a delicate balance between conversion, stability, and cost. We combine machine learning-driven prediction models with Bayesian optimization to explore and identify novel catalyst compositions. The proposed method efficiently explores the catalysis composition space for a predefined set of active metals, supports, and promoters to identify the most promising catalyst formulations. We assign weights to different performance metrics of catalysts, enabling tailored optimization according to specific industry needs. Our screening system streamlines catalyst discovery and facilitates the screening and selection of catalysts that balance conversion performance, stability, and cost-effectiveness. This approach holds significant promise for advancement in heterogeneous catalysis to meet the growing demands of efficient industrial processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习增强型水-气变换反应催化剂优化选择
在旨在将甲烷和其他碳氢化合物蒸汽转化过程中产生的副产品一氧化碳转化为二氧化碳和氢气的工业中,水气变换(WGS)反应至关重要。为这种转化选择有效的催化剂是一项巨大的挑战,因为它需要在转化率、稳定性和成本之间取得微妙的平衡。我们将机器学习驱动的预测模型与贝叶斯优化相结合,探索并确定新型催化剂成分。所提出的方法可有效探索一组预定义的活性金属、支撑剂和促进剂的催化成分空间,从而确定最有前途的催化剂配方。我们为催化剂的不同性能指标分配了权重,从而可以根据特定行业的需求进行量身优化。我们的筛选系统简化了催化剂的发现过程,有助于筛选和选择兼顾转化性能、稳定性和成本效益的催化剂。这种方法有望推动异相催化技术的发展,满足高效工业流程日益增长的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1