Mengxi Zhang , Huaxiao Liu , Shenning Song , Chunyang Chen , Pei Huang , Jian Zhao
{"title":"Are your apps accessible? A GCN-based accessibility checker for low vision users","authors":"Mengxi Zhang , Huaxiao Liu , Shenning Song , Chunyang Chen , Pei Huang , Jian Zhao","doi":"10.1016/j.infsof.2024.107518","DOIUrl":null,"url":null,"abstract":"<div><h3>Context:</h3><p>Accessibility issues (e.g., small size and narrow interval) in mobile applications (apps) lead to obstacles for billions of low vision users in interacting with Graphical User Interfaces (GUIs). Although GUI accessibility scanning tools exist, most of them perform rule-based check relying on complex GUI hierarchies. This might make them detect invisible redundant information, cannot handle small deviations, omit similar components, and is hard to extend.</p></div><div><h3>Objective:</h3><p>In this paper, we propose a novel approach, named ALVIN (Accessibility Checker for Low Vision), which represents the GUI as a graph and adopts the Graph Convolutional Neural Networks (GCN) to label inaccessible components.</p></div><div><h3>Method:</h3><p>ALVIN removes invisible views to prevent detecting redundancy and uses annotations from low vision users to handle small deviations. Also, the GCN model could consider the relations between GUI components, connecting similar components and reducing the possibility of omission. ALVIN only requires users to annotate the relevant dataset when detecting new kinds of issues.</p></div><div><h3>Results:</h3><p>Our experiments on 48 apps demonstrate the effectiveness of ALVIN, with precision of 83.5%, recall of 78.9%, and F1-score of 81.2%, outperforming baseline methods. In RQ2, the usefulness is verified through 20 issues submitted to open-source apps. The RQ3 also illustrates the GCN model is better than other models.</p></div><div><h3>Conclusion:</h3><p>To summarize, our proposed approach can effectively detect accessibility issues in GUIs for low vision users, thereby guiding developers in fixing them efficiently.</p></div>","PeriodicalId":54983,"journal":{"name":"Information and Software Technology","volume":"174 ","pages":"Article 107518"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Software Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095058492400123X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Context:
Accessibility issues (e.g., small size and narrow interval) in mobile applications (apps) lead to obstacles for billions of low vision users in interacting with Graphical User Interfaces (GUIs). Although GUI accessibility scanning tools exist, most of them perform rule-based check relying on complex GUI hierarchies. This might make them detect invisible redundant information, cannot handle small deviations, omit similar components, and is hard to extend.
Objective:
In this paper, we propose a novel approach, named ALVIN (Accessibility Checker for Low Vision), which represents the GUI as a graph and adopts the Graph Convolutional Neural Networks (GCN) to label inaccessible components.
Method:
ALVIN removes invisible views to prevent detecting redundancy and uses annotations from low vision users to handle small deviations. Also, the GCN model could consider the relations between GUI components, connecting similar components and reducing the possibility of omission. ALVIN only requires users to annotate the relevant dataset when detecting new kinds of issues.
Results:
Our experiments on 48 apps demonstrate the effectiveness of ALVIN, with precision of 83.5%, recall of 78.9%, and F1-score of 81.2%, outperforming baseline methods. In RQ2, the usefulness is verified through 20 issues submitted to open-source apps. The RQ3 also illustrates the GCN model is better than other models.
Conclusion:
To summarize, our proposed approach can effectively detect accessibility issues in GUIs for low vision users, thereby guiding developers in fixing them efficiently.
期刊介绍:
Information and Software Technology is the international archival journal focusing on research and experience that contributes to the improvement of software development practices. The journal''s scope includes methods and techniques to better engineer software and manage its development. Articles submitted for review should have a clear component of software engineering or address ways to improve the engineering and management of software development. Areas covered by the journal include:
• Software management, quality and metrics,
• Software processes,
• Software architecture, modelling, specification, design and programming
• Functional and non-functional software requirements
• Software testing and verification & validation
• Empirical studies of all aspects of engineering and managing software development
Short Communications is a new section dedicated to short papers addressing new ideas, controversial opinions, "Negative" results and much more. Read the Guide for authors for more information.
The journal encourages and welcomes submissions of systematic literature studies (reviews and maps) within the scope of the journal. Information and Software Technology is the premiere outlet for systematic literature studies in software engineering.