Adaptive fault-tolerant control for a class of nonlinear multi-agent systems with multiple unknown time-varying control directions

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS Automatica Pub Date : 2024-06-24 DOI:10.1016/j.automatica.2024.111802
Xiaoyu Guo , Chenliang Wang , Lu Liu
{"title":"Adaptive fault-tolerant control for a class of nonlinear multi-agent systems with multiple unknown time-varying control directions","authors":"Xiaoyu Guo ,&nbsp;Chenliang Wang ,&nbsp;Lu Liu","doi":"10.1016/j.automatica.2024.111802","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the consensus tracking control for a class of heterogeneous multi-agent systems with multiple unknown time-varying control directions and unknown direction actuator faults. Different from existing work, the directions of the multiple time-varying control coefficients are subject to fault-induced sign-switching. To address this challenge, a series of high-order Lyapunov functions and differentiable functions are introduced to avoid non-integrable terms. Then, a novel contradiction statement and some Nussbaum functions are used to handle the summation of multiple unknown control coefficients with time-varying amplitudes and directions. Meanwhile, a novel distributed observer with quantized communication is introduced to track a reference trajectory with unknown dynamics. It is shown that all closed-loop signals are globally uniformly bounded and the tracking errors converge to residual sets that can be made arbitrarily small. Simulation results illustrate the effectiveness of the proposed scheme.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824002966","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the consensus tracking control for a class of heterogeneous multi-agent systems with multiple unknown time-varying control directions and unknown direction actuator faults. Different from existing work, the directions of the multiple time-varying control coefficients are subject to fault-induced sign-switching. To address this challenge, a series of high-order Lyapunov functions and differentiable functions are introduced to avoid non-integrable terms. Then, a novel contradiction statement and some Nussbaum functions are used to handle the summation of multiple unknown control coefficients with time-varying amplitudes and directions. Meanwhile, a novel distributed observer with quantized communication is introduced to track a reference trajectory with unknown dynamics. It is shown that all closed-loop signals are globally uniformly bounded and the tracking errors converge to residual sets that can be made arbitrarily small. Simulation results illustrate the effectiveness of the proposed scheme.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类具有多个未知时变控制方向的非线性多代理系统的自适应容错控制
本文研究了一类具有多个未知时变控制方向和未知方向执行器故障的异构多代理系统的共识跟踪控制。与现有研究不同的是,多个时变控制系数的方向会受到故障引起的符号切换的影响。为解决这一难题,我们引入了一系列高阶 Lyapunov 函数和可微分函数,以避免不可解项。然后,利用新颖的矛盾声明和一些努斯鲍姆函数来处理具有时变振幅和方向的多个未知控制系数的求和。同时,还引入了一种具有量化通信功能的新型分布式观测器,用于跟踪具有未知动态的参考轨迹。结果表明,所有闭环信号都是全局均匀有界的,跟踪误差收敛于残差集,且残差集可以任意变小。仿真结果表明了所提方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
期刊最新文献
Deep networks for system identification: A survey Linear–quadratic mean-field game for stochastic systems with partial observation Modelling of memristor networks and the effective memristor Equi-normalized robust positively invariant sets for linear difference inclusions Adaptive event-triggered output feedback control for uncertain parabolic PDEs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1