{"title":"Frequency-adaptive odd-harmonic repetitive control scheme for three-phase shunt active power filters","authors":"Feng Gao, Zhifeng Bai","doi":"10.1016/j.ejcon.2024.101078","DOIUrl":null,"url":null,"abstract":"<div><p>Repetitive control (RC), which can track the periodic input or suppress the periodic disturbance with a zero steady-state error, is a promising control strategy for shunt active power filters (SAPF). However, the conventional RC (CRC) scheme will suffer a severe performance degradation caused by the grid frequency variations. In this article, a frequency-adaptive odd-harmonic repetitive control scheme with a single and fixed sampling rate is proposed for SAPF to deal with grid frequency variations and provide fast transient response for RC system. The frequency-adaptability of proposed repetitive control scheme can be implemented by updating the coefficients of the approximate expression for the delay unit in repetitive controller. The FIR filter based on Lagrange linear interpolation is used to transform the multirate repetitive control system into single-rate repetitive control system to address the problems caused by the multirate repetitive control system. Moreover, a fractional-order linear compensator with a simple structure is designed to compensate the magnitude and phase of the system accurately. Compared with other classical repetitive control strategies, the proposed repetitive control scheme can provide a better adaptation to the steady-state deviation and dynamic variation of grid frequency and ensure the control performance of SAPF system. Simulation and experimental results verify the effectiveness of the proposed control scheme.</p></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"79 ","pages":"Article 101078"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358024001389","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Repetitive control (RC), which can track the periodic input or suppress the periodic disturbance with a zero steady-state error, is a promising control strategy for shunt active power filters (SAPF). However, the conventional RC (CRC) scheme will suffer a severe performance degradation caused by the grid frequency variations. In this article, a frequency-adaptive odd-harmonic repetitive control scheme with a single and fixed sampling rate is proposed for SAPF to deal with grid frequency variations and provide fast transient response for RC system. The frequency-adaptability of proposed repetitive control scheme can be implemented by updating the coefficients of the approximate expression for the delay unit in repetitive controller. The FIR filter based on Lagrange linear interpolation is used to transform the multirate repetitive control system into single-rate repetitive control system to address the problems caused by the multirate repetitive control system. Moreover, a fractional-order linear compensator with a simple structure is designed to compensate the magnitude and phase of the system accurately. Compared with other classical repetitive control strategies, the proposed repetitive control scheme can provide a better adaptation to the steady-state deviation and dynamic variation of grid frequency and ensure the control performance of SAPF system. Simulation and experimental results verify the effectiveness of the proposed control scheme.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.