Corrigendum to “QCD parameters and SM-high precision from e+e−→ Hadrons: Updated” [Nucl. Phys. A 1046 (2024) 122873]

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR Nuclear Physics A Pub Date : 2024-06-27 DOI:10.1016/j.nuclphysa.2024.122915
Stephan Narison
{"title":"Corrigendum to “QCD parameters and SM-high precision from e+e−→ Hadrons: Updated” [Nucl. Phys. A 1046 (2024) 122873]","authors":"Stephan Narison","doi":"10.1016/j.nuclphysa.2024.122915","DOIUrl":null,"url":null,"abstract":"<div><p><em>Parts 3 and 4 of the original Abstract have been modified as:</em></p><p><strong>3.</strong> I use these new values of the <span><math><mi>D</mi><mo>=</mo><mn>6</mn><mo>,</mo><mn>8</mn></math></span> power corrections to extract <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> from the BNP lowest moment. To order <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>4</mn></mrow></msubsup></math></span>, I find within the SVZ expansion: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3081</mn><msub><mrow><mo>(</mo><mn>49</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>71</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3260</mn><msub><mrow><mo>(</mo><mn>47</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>62</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1170</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1192</mn><mo>(</mo><mn>6</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3179</mn><msub><mrow><mo>(</mo><mn>58</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>81</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1182</mn><mo>(</mo><mn>12</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we obtain from the vector (V) component of <em>τ</em>-decay data: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3128</mn><msub><mrow><mo>(</mo><mn>19</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>77</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub></math></span> [resp. <span><math><mn>0.3291</mn><msub><mrow><mo>(</mo><mn>25</mn><mo>)</mo></mrow><mrow><mi>f</mi><mi>i</mi><mi>t</mi></mrow></msub><msub><mrow><mo>(</mo><mn>65</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mn>5</mn></mrow></msubsup></mrow></msub><mo>]</mo></math></span> implying <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1176</mn><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span> [resp. <span><math><mn>0.1196</mn><mo>(</mo><mn>8</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>] for FO [resp. CI] PT series, giving the mean: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.3219</mn><mo>(</mo><mn>52</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>91</mn><mo>)</mo></mrow><mrow><mi>s</mi><mi>y</mi><mi>s</mi><mi>t</mi></mrow></msub></math></span> leading to: <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><msubsup><mrow><mo>|</mo></mrow><mrow><mi>τ</mi><mo>,</mo><mi>V</mi></mrow><mrow><mi>S</mi><mi>V</mi><mi>Z</mi></mrow></msubsup><mo>=</mo><mn>0.1187</mn><mo>(</mo><mn>13</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>. The average of the two determinations from <span><math><msup><mrow><mi>e</mi></mrow><mrow><mo>+</mo></mrow></msup><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> and <em>τ</em>-decay data is: <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.3198</mn><mo>(</mo><mn>72</mn><mo>)</mo></math></span> which implies <span><math><mo>〈</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow></msub><mo>)</mo><mo>〉</mo><mo>=</mo><mn>0.1185</mn><mo>(</mo><mn>9</mn><mo>)</mo><msub><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow><mrow><mi>e</mi><mi>v</mi><mi>o</mi><mi>l</mi></mrow></msub></math></span>.</p><p><strong>4.</strong> Some (eventual) contributions beyond the SVZ expansion (<span><math><mn>1</mn><mo>/</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, instantons and duality violation) are discussed in Sections 10 and 11 which are expected to be relatively small.</p></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0375947424000976/pdfft?md5=041d74ed5bc9b976ab931d614a6043bc&pid=1-s2.0-S0375947424000976-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947424000976","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Parts 3 and 4 of the original Abstract have been modified as:

3. I use these new values of the D=6,8 power corrections to extract αs from the BNP lowest moment. To order αs4, I find within the SVZ expansion: αs(Mτ)|e+eSVZ=0.3081(49)fit(71)αs5 [resp. 0.3260(47)fit(62)αs5] implying αs(MZ)|e+eSVZ=0.1170(6)(3)evol [resp. 0.1192(6)(3)evol] for Fixed Order (FO) [resp. Contour Improved (CI)] PT series. They lead to the mean: αs(Mτ)|e+eSVZ=0.3179(58)fit(81)syst and αs(MZ)|e+eSVZ=0.1182(12)(3)evol where the systematic error(syst) takes into account the discrepancy between the FO and CI results. Using the lowest BNP moment, we obtain from the vector (V) component of τ-decay data: αs(Mτ)|τ,VSVZ=0.3128(19)fit(77)αs5 [resp. 0.3291(25)fit(65)αs5] implying αs(MZ)|τ,VSVZ=0.1176(10)(3)evol [resp. 0.1196(8)(3)evol] for FO [resp. CI] PT series, giving the mean: αs(Mτ)|τ,VSVZ=0.3219(52)(91)syst leading to: αs(MZ)|τ,VSVZ=0.1187(13)(3)evol. The average of the two determinations from e+e and τ-decay data is: αs(Mτ)=0.3198(72) which implies αs(MZ)=0.1185(9)(3)evol.

4. Some (eventual) contributions beyond the SVZ expansion (1/Q2, instantons and duality violation) are discussed in Sections 10 and 11 which are expected to be relatively small.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自 e+e-→ Hadrons 的 QCD 参数和 SM 高精度:更新" [Nucl.
原摘要的第 3 和第 4 部分被修改为:3.我使用这些新的 D=6,8 功率修正值从 BNP 最低矩中提取 αs。对 αs4 阶,我在 SVZ 扩展中发现:αs(Mτ)|e+e-SVZ=0.3081(49)fit(71)αs5 [resp. 0.3260(47)fit(62)αs5]意味着固定阶(FO)[respect. Contour Improved (CI)]PT 序列的 αs(MZ)|e+e-SVZ=0.1170(6)(3)evol [resp. 0.1192(6)(3)evol] 。它们导致平均值:αs(Mτ)|e+e-SVZ=0.3179(58)fit(81)syst 和 αs(MZ)|e+e-SVZ=0.1182(12)(3)evol,其中系统误差(syst)考虑了 FO 和 CI 结果之间的差异。利用最低BNP矩,我们从τ衰变数据的矢量(V)分量得到:αs(Mτ)|τ,VSVZ=0.3128(19)fit(77)αs5 [resp. 0.3291(25)fit(65)αs5] 意味着 FO [resp. CI] PT 系列的 αs(MZ)|τ,VSVZ=0.1176(10)(3)evol[resp. 0.1196(8)(3)evol],得出平均值:αs(Mτ)|τ,VSVZ=0.3219(52)(91)syst,从而得出:αs(MZ)|τ,VSVZ=0.1187(13)(3)evol。从 e+e- 和 τ 衰变数据得出的两个测定值的平均值是:αs(Mτ)〉=0.3198(72),这意味着〈αs(MZ)〉=0.1185(9)(3)evol.4。 第10节和第11节讨论了SVZ扩展之外的一些(最终)贡献(1/Q2、瞬子和对偶违反),预计这些贡献相对较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
期刊最新文献
Entanglement entropy approach for examining quantum phase transition in the framework of semiclassical approximation: Testing its validity in Casten triangle Fission fragment spectroscopy of 235U(nth,f) Factorization of photon induced processes in ultra-peripheral heavy ion collisions Editorial Board Gluon generalized TMDs and Wigner distributions in boost invariant longitudinal space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1