Structure of transcriptionally active chromatin.

M Yaniv, S Cereghini
{"title":"Structure of transcriptionally active chromatin.","authors":"M Yaniv,&nbsp;S Cereghini","doi":"10.3109/10409238609113607","DOIUrl":null,"url":null,"abstract":"<p><p>Transcriptionally active or potentially active genes can be distinguished by several criteria from inactive sequences. Active genes show both an increased general sensitivity to endonucleases like DNase I or micrococcal nuclease and the presence of nuclease hypersensitive sites. Frequently, the nuclease hypersensitive sites are present just upstream of the transcription initiation site covering sequences that are crucial for the promoter function. Viral or cellular transcription enhancer elements are also associated with DNase I hypersensitive sites. At least for the SV40 enhancer, it was shown by electronmicroscopic studies that the DNase I hypersensitive DNA segment is excluded from nucleosomes. It is highly plausible that the binding of regulatory proteins to enhancer or promoter sequences is responsible for the exclusion of these DNA segments from nucleosomes and for the formation of nuclease hypersensitive sites. We speculate that the binding of such proteins may switch on a change in the conformation and/or the protein composition of a chromatin segment or domain containing one to several genes. Biochemical analysis of fractionated nucleosome particles or of active and inactive chromatin fractions have revealed differences in the composition as well as in the degree of modification of histones in these two subfractions of the chromosome. However, until present it is impossible to define unambiguously what are the crucial structural elements that distinguish between particles present on active and inactive chromatin.</p>","PeriodicalId":75744,"journal":{"name":"CRC critical reviews in biochemistry","volume":"21 1","pages":"1-26"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10409238609113607","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRC critical reviews in biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10409238609113607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Transcriptionally active or potentially active genes can be distinguished by several criteria from inactive sequences. Active genes show both an increased general sensitivity to endonucleases like DNase I or micrococcal nuclease and the presence of nuclease hypersensitive sites. Frequently, the nuclease hypersensitive sites are present just upstream of the transcription initiation site covering sequences that are crucial for the promoter function. Viral or cellular transcription enhancer elements are also associated with DNase I hypersensitive sites. At least for the SV40 enhancer, it was shown by electronmicroscopic studies that the DNase I hypersensitive DNA segment is excluded from nucleosomes. It is highly plausible that the binding of regulatory proteins to enhancer or promoter sequences is responsible for the exclusion of these DNA segments from nucleosomes and for the formation of nuclease hypersensitive sites. We speculate that the binding of such proteins may switch on a change in the conformation and/or the protein composition of a chromatin segment or domain containing one to several genes. Biochemical analysis of fractionated nucleosome particles or of active and inactive chromatin fractions have revealed differences in the composition as well as in the degree of modification of histones in these two subfractions of the chromosome. However, until present it is impossible to define unambiguously what are the crucial structural elements that distinguish between particles present on active and inactive chromatin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
转录活性染色质的结构。
转录活性或潜在活性基因可以通过几种标准与非活性序列区分。活性基因对核酸内切酶如DNase I或微球菌核酸酶和核酸酶超敏感位点的存在均表现出增加的一般敏感性。通常,核酸酶超敏位点位于转录起始位点的上游,覆盖对启动子功能至关重要的序列。病毒或细胞转录增强子元件也与dna酶I超敏感位点相关。至少对于SV40增强子,电镜研究表明,DNA酶I超敏DNA片段被排除在核小体之外。调控蛋白与增强子或启动子序列的结合是核小体排除这些DNA片段和形成核酸酶超敏感位点的原因,这是非常可信的。我们推测,这些蛋白质的结合可能会导致含有一到几个基因的染色质片段或结构域的构象和/或蛋白质组成发生变化。对分离核小体颗粒或活性和非活性染色质部分的生化分析揭示了这两个染色体亚部分中组蛋白的组成和修饰程度的差异。然而,到目前为止,不可能明确地定义什么是区分活跃和非活跃染色质上存在的颗粒的关键结构要素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enzymes of nucleotide metabolism: the significance of subunit size and polymer size for biological function and regulatory properties. Spectrin and related molecules. Transcription elements and factors of RNA polymerase B promoters of higher eukaryotes. Initiation of coagulation by tissue factor. Interpreting the behavior of enzymes: purpose or pedigree?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1