An easy-to-follow handbook for electroencephalogram data analysis with Python

Brain-X Pub Date : 2024-06-30 DOI:10.1002/brx2.64
Zitong Lu, Wanru Li, Lu Nie, Kuangshi Zhao
{"title":"An easy-to-follow handbook for electroencephalogram data analysis with Python","authors":"Zitong Lu,&nbsp;Wanru Li,&nbsp;Lu Nie,&nbsp;Kuangshi Zhao","doi":"10.1002/brx2.64","DOIUrl":null,"url":null,"abstract":"<p>This easy-to-follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single-subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single-Subject Data, Basic Python Data Operations, Multiple-Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single-Subject Data chapter provides a standardized procedure for single-subject EEG data preprocessing, primarily using the MNE-Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple-Subject Analysis chapter guides readers on performing event-related potential and time-frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification-based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python-EEG-Handbook; For Chinese version: https://github.com/ZitongLu1996/Python-EEG-Handbook-CN).</p>","PeriodicalId":94303,"journal":{"name":"Brain-X","volume":"2 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brx2.64","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-X","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brx2.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This easy-to-follow handbook offers a straightforward guide to electroencephalogram (EEG) analysis using Python, aimed at all EEG researchers in cognitive neuroscience and related fields. It spans from single-subject data preprocessing to advanced multisubject analyses. This handbook contains four chapters: Preprocessing Single-Subject Data, Basic Python Data Operations, Multiple-Subject Analysis, and Advanced EEG Analysis. The Preprocessing Single-Subject Data chapter provides a standardized procedure for single-subject EEG data preprocessing, primarily using the MNE-Python package. The Basic Python Data Operations chapter introduces essential Python operations for EEG data handling, including data reading, storage, and statistical analysis. The Multiple-Subject Analysis chapter guides readers on performing event-related potential and time-frequency analyses and visualizing outcomes through examples from a face perception task dataset. The Advanced EEG Analysis chapter explores three advanced analysis methodologies, Classification-based decoding, Representational Similarity Analysis, and Inverted Encoding Model, through practical examples from a visual working memory task dataset using NeuroRA and other powerful packages. We designed our handbook for easy comprehension to be an essential tool for anyone delving into EEG data analysis with Python (GitHub website: https://github.com/ZitongLu1996/Python-EEG-Handbook; For Chinese version: https://github.com/ZitongLu1996/Python-EEG-Handbook-CN).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 Python 进行脑电图数据分析的简明手册
这本手册简单易懂,为认知神经科学和相关领域的所有脑电图研究人员提供了使用 Python 进行脑电图(EEG)分析的直接指导。它涵盖了从单受试者数据预处理到高级多受试者分析。本手册包含四个章节:单被试数据预处理、Python 基本数据操作、多被试分析和高级脑电图分析。单受试者数据预处理一章提供了单受试者脑电图数据预处理的标准化程序,主要使用 MNE-Python 软件包。基本 Python 数据操作一章介绍了处理脑电图数据的基本 Python 操作,包括数据读取、存储和统计分析。多受试者分析一章通过人脸感知任务数据集的示例,指导读者执行事件相关电位和时间频率分析,并将结果可视化。高级脑电图分析一章通过使用 NeuroRA 和其他功能强大的软件包的视觉工作记忆任务数据集实例,探讨了三种高级分析方法:基于分类的解码、表征相似性分析和倒置编码模型。我们设计的这本手册通俗易懂,是任何人使用 Python 进行脑电数据分析的必备工具(GitHub 网站:https://github.com/ZitongLu1996/Python-EEG-Handbook;中文版:https://github.com/ZitongLu1996/Python-EEG-Handbook-CN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Research progress and applications of optoelectronic synaptic devices based on 2D materials Mechanosensitive Piezo channels and their potential roles in peripheral auditory perception Brain perfusion alterations in patients and survivors of COVID-19 infection using arterial spin labeling: A systematic review Microbiome-gut-brain axis as a novel hotspot in depression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1