{"title":"A Detailed Reconstruction of the Woodlark Basin","authors":"E. K. Benyshek, B. Taylor, A. M. Goodliffe","doi":"10.1029/2023GC011410","DOIUrl":null,"url":null,"abstract":"<p>An animated 100,000-year-interval tectonic reconstruction of the Woodlark Basin in the southwest Pacific illustrates how, at intermediate initial spreading rates, orogenic continents break up (dyke model), spreading segments nucleate, transform faults initiate and ocean basins evolve. We refine the location/timing of initial seafloor spreading and Euler poles of rotation back to 6.2 Ma. In the easternmost basin, where spreading younger than 2.6 Ma is not co-polar with that to the west, we recognize the formation of a Ghizo microplate and Ranongga Transform Fault at ∼2.6 Ma and a 3-degree rotational opening of the Itina Trough from 2.6 to 1.0 Ma. Allowing for that motion, we show that the 5.2–2.6 Ma seafloor in the easternmost basin formed co-polar with that to the west. We also identify a ridge jump reorientation at ∼1.0 Ma that formed the NE-trending Simbo Spreading Segment, whose neovolcanic zone includes Simbo Island and a submarine edifice to its south. Proposed deterministic models of ridge propagation (due to topographic gradients, mantle flow away from hotspots and/or changing plate motion) are not consistent with those observed; mantle chemical heterogeneities and melting anomalies are a potential cause that remains to be tested. We reconstruct the northern conjugate of the oldest extant oceanic crust and estimate the initiation of its subduction at ∼2.6 Ma, concomitant with observed changes in plate motion and segmentation. Where subducted, the young oceanic lithosphere between the conjugate rifted margins appears to be resorbed into the mantle, leaving a slab window where the Pacific subducted slab remains attached.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"25 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GC011410","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GC011410","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
An animated 100,000-year-interval tectonic reconstruction of the Woodlark Basin in the southwest Pacific illustrates how, at intermediate initial spreading rates, orogenic continents break up (dyke model), spreading segments nucleate, transform faults initiate and ocean basins evolve. We refine the location/timing of initial seafloor spreading and Euler poles of rotation back to 6.2 Ma. In the easternmost basin, where spreading younger than 2.6 Ma is not co-polar with that to the west, we recognize the formation of a Ghizo microplate and Ranongga Transform Fault at ∼2.6 Ma and a 3-degree rotational opening of the Itina Trough from 2.6 to 1.0 Ma. Allowing for that motion, we show that the 5.2–2.6 Ma seafloor in the easternmost basin formed co-polar with that to the west. We also identify a ridge jump reorientation at ∼1.0 Ma that formed the NE-trending Simbo Spreading Segment, whose neovolcanic zone includes Simbo Island and a submarine edifice to its south. Proposed deterministic models of ridge propagation (due to topographic gradients, mantle flow away from hotspots and/or changing plate motion) are not consistent with those observed; mantle chemical heterogeneities and melting anomalies are a potential cause that remains to be tested. We reconstruct the northern conjugate of the oldest extant oceanic crust and estimate the initiation of its subduction at ∼2.6 Ma, concomitant with observed changes in plate motion and segmentation. Where subducted, the young oceanic lithosphere between the conjugate rifted margins appears to be resorbed into the mantle, leaving a slab window where the Pacific subducted slab remains attached.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.