Methodological and force field effects in the molecular dynamics-based prediction of binding free energies of host–guest systems

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-07-02 DOI:10.1039/D4CP01804D
Zhaoxi Sun and Piero Procacci
{"title":"Methodological and force field effects in the molecular dynamics-based prediction of binding free energies of host–guest systems","authors":"Zhaoxi Sun and Piero Procacci","doi":"10.1039/D4CP01804D","DOIUrl":null,"url":null,"abstract":"<p >As a contribution to the understanding and rationalization of methodological and modeling effects in recent host–guest SAMPL challenges, using an alchemical molecular dynamics technique we have examined the impact of force field parameterization and ionic strength in connection with guest charge neutralization on computed dissociation free energies in two typical SAMPL heavily charged macrocyclic hosts encapsulating small protonated amines with disparate binding affinities. We have shown that the methodological treatment for host neutralization, with explicit ions or with the background neutralizing plasma in the context of alchemical calculations under periodic boundary conditions, has a moderate effect on the calculated affinities. On the other hand, we have shown that seemingly small differences in the force field parameterization in highly symmetric hosts can produce systematic effects on the structural features that can have a significant impact on the predicted binding affinities.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/cp/d4cp01804d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cp/d4cp01804d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As a contribution to the understanding and rationalization of methodological and modeling effects in recent host–guest SAMPL challenges, using an alchemical molecular dynamics technique we have examined the impact of force field parameterization and ionic strength in connection with guest charge neutralization on computed dissociation free energies in two typical SAMPL heavily charged macrocyclic hosts encapsulating small protonated amines with disparate binding affinities. We have shown that the methodological treatment for host neutralization, with explicit ions or with the background neutralizing plasma in the context of alchemical calculations under periodic boundary conditions, has a moderate effect on the calculated affinities. On the other hand, we have shown that seemingly small differences in the force field parameterization in highly symmetric hosts can produce systematic effects on the structural features that can have a significant impact on the predicted binding affinities.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分子动力学预测主客体系统结合自由能的方法和力场影响
为了帮助理解和合理解释最近的宿主-客体 SAMPL 挑战中的方法和建模影响,我们使用炼金术分子动力学技术,研究了与客体电荷中和有关的力场参数化和离子强度对两种典型的 SAMPL 重电荷大环宿主(封装了具有不同结合力的小质子胺)中计算解离自由能的影响。我们发现,在周期性边界条件下进行炼金术计算时,宿主中和的方法学处理(明确离子或背景中和等离子体)对计算的自由能影响不大。另一方面,我们已经证明,在高度对称的宿主中,力场参数化中看似微小的差异会对结构特征产生系统性影响,从而对预测的结合率产生显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
A first-principles study of organic Lewis bases for passivating tin-based perovskite solar cells. The indanone N-H type excited-state intramolecular proton transfer (ESIPT); the observation of a mechanically induced ESIPT reaction. Simulations of photoinduced processes with the exact factorization: State of the art and perspectives Complete kinetic and photochemical characterization of the multi-step photochromic reaction of DASA Tunable electronic and optoelectronic characteristics of two-dimensional β-AsP monolayer: A first-principles study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1