Impact of surface roughness on the coefficient of friction of polymer-on-polymer contacts for deflection pulley-rope systems in the lift industry

IF 6.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL Friction Pub Date : 2024-07-01 DOI:10.1007/s40544-024-0881-8
Ainhoa Guinea, Andrea Aginagalde, Wilson Tato, Iñigo Llavori, Pablo Garcia, Leire Arraiago, Alaitz Zabala
{"title":"Impact of surface roughness on the coefficient of friction of polymer-on-polymer contacts for deflection pulley-rope systems in the lift industry","authors":"Ainhoa Guinea, Andrea Aginagalde, Wilson Tato, Iñigo Llavori, Pablo Garcia, Leire Arraiago, Alaitz Zabala","doi":"10.1007/s40544-024-0881-8","DOIUrl":null,"url":null,"abstract":"<p>The coefficient of friction (CoF) between the deflection pulley and rope in a lift strongly affects the life span of the rope. Although surface roughness is a key factor affecting the metallic pulley–rope CoF, its effect on polymeric pulleys is unknown. The present study analyses the effect of roughness and working conditions on cast polyamide 6 (PA6G) deflection pulley–thermoplastic polyurethane (TPU)-coated rope contacts. The statistical analysis revealed that the effect of surface roughness on the CoF for low-load tests was significant. The present study contributes significantly to parameter selection in deflection pulley machining to minimise friction between the pulley and rope.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0881-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The coefficient of friction (CoF) between the deflection pulley and rope in a lift strongly affects the life span of the rope. Although surface roughness is a key factor affecting the metallic pulley–rope CoF, its effect on polymeric pulleys is unknown. The present study analyses the effect of roughness and working conditions on cast polyamide 6 (PA6G) deflection pulley–thermoplastic polyurethane (TPU)-coated rope contacts. The statistical analysis revealed that the effect of surface roughness on the CoF for low-load tests was significant. The present study contributes significantly to parameter selection in deflection pulley machining to minimise friction between the pulley and rope.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
表面粗糙度对升降机行业偏转滑轮-绳索系统中聚合物-聚合物接触摩擦系数的影响
在电梯中,偏转滑轮和钢丝绳之间的摩擦系数(CoF)对钢丝绳的使用寿命有很大影响。虽然表面粗糙度是影响金属滑轮-钢丝绳 CoF 的关键因素,但其对聚合物滑轮的影响尚不清楚。本研究分析了粗糙度和工作条件对浇铸聚酰胺 6(PA6G)偏转滑轮-热塑性聚氨酯(TPU)涂层钢丝绳接触的影响。统计分析显示,表面粗糙度对低负荷试验的 CoF 有显著影响。本研究大大有助于偏转滑轮加工中的参数选择,以最大限度地减少滑轮和钢丝绳之间的摩擦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Friction
Friction Engineering-Mechanical Engineering
CiteScore
12.90
自引率
13.20%
发文量
324
审稿时长
13 weeks
期刊介绍: Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as: Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc. Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc. Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc. Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc. Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc. Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.
期刊最新文献
A “bricks-and-mortar” structured graphene oxide/polyvinyl alcohol coating: enhanced water interfacial lubrication and durability Lubrication antagonism mechanism of nano-MoS2 and soot particles in ester base oil Excellent lubricating hydrogels with rapid photothermal sterilization for medical catheters coating A robust low-friction triple network hydrogel based on multiple synergistic enhancement mechanisms Tribological behavior of TiN, AlTiN, and AlTiCrN coatings in atmospheric and vacuum environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1