Using static magnetic field to recover ammonia efficiently by DNRA process

IF 11.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL npj Clean Water Pub Date : 2024-07-02 DOI:10.1038/s41545-024-00352-3
Yuyang Xie, Zhibin Wang, Shou-Qing Ni
{"title":"Using static magnetic field to recover ammonia efficiently by DNRA process","authors":"Yuyang Xie, Zhibin Wang, Shou-Qing Ni","doi":"10.1038/s41545-024-00352-3","DOIUrl":null,"url":null,"abstract":"Dissimilatory nitrate reduction to ammonium (DNRA) has garnered attention due to its ability to recover ammonia and reduce greenhouse gas emissions simultaneously. In this study, the potential of using static magnetic field (SMF) to improve DNRA process was explored from the sight of molecular biology. Functional genes, microbial community structure, and metabolism pathways were discussed. SMF of 40 mT shortened the start-up time of DNRA from 75 days to 41 days, while 80 mT SMF delayed it to 103 days. On day 80, DNRA potential rate under 40 mT SMF, reached 174 ± 11 μmol kg−1 h−1, significantly surpassing 0 mT (88 ± 6 μmol kg−1 h−1) and 80 mT SMF (52 ± 4 μmol kg−1 h−1). SMF of 40 mT also accelerated community succession and the enrichment of functional bacteria like Geobacter (from 15.71% to 32.11%). qPCR results suggested that 40 mT SMF promoted the rapid enrichment of DNRA functional gene nrfA and 80 mT SMF promoted the enrichment of nirS gene on day 40. Dynamic responses of Thauera sp. RT1901, Stutzerimonas stutzeri, Shewanella oneidensis MR-1, and Shewanella loihica PV-4 to SMF at transcriptional levels confirmed SMF could improve the nitrogen removal and electron transfer of DNRA and denitrification bacteria. Consequently, this work validated the possibility of using SMF to improve DNRA process for ammonia recovery and investigated the underlying mechanisms, which could promote the application of DNRA in full-scale.","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":" ","pages":"1-15"},"PeriodicalIF":11.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41545-024-00352-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://www.nature.com/articles/s41545-024-00352-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dissimilatory nitrate reduction to ammonium (DNRA) has garnered attention due to its ability to recover ammonia and reduce greenhouse gas emissions simultaneously. In this study, the potential of using static magnetic field (SMF) to improve DNRA process was explored from the sight of molecular biology. Functional genes, microbial community structure, and metabolism pathways were discussed. SMF of 40 mT shortened the start-up time of DNRA from 75 days to 41 days, while 80 mT SMF delayed it to 103 days. On day 80, DNRA potential rate under 40 mT SMF, reached 174 ± 11 μmol kg−1 h−1, significantly surpassing 0 mT (88 ± 6 μmol kg−1 h−1) and 80 mT SMF (52 ± 4 μmol kg−1 h−1). SMF of 40 mT also accelerated community succession and the enrichment of functional bacteria like Geobacter (from 15.71% to 32.11%). qPCR results suggested that 40 mT SMF promoted the rapid enrichment of DNRA functional gene nrfA and 80 mT SMF promoted the enrichment of nirS gene on day 40. Dynamic responses of Thauera sp. RT1901, Stutzerimonas stutzeri, Shewanella oneidensis MR-1, and Shewanella loihica PV-4 to SMF at transcriptional levels confirmed SMF could improve the nitrogen removal and electron transfer of DNRA and denitrification bacteria. Consequently, this work validated the possibility of using SMF to improve DNRA process for ammonia recovery and investigated the underlying mechanisms, which could promote the application of DNRA in full-scale.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用静磁场通过 DNRA 工艺高效回收氨气
异氨硝酸盐还原成铵(DNRA)因其能够同时回收氨和减少温室气体排放而备受关注。本研究从分子生物学角度探讨了利用静态磁场(SMF)改善 DNRA 过程的潜力。研究讨论了功能基因、微生物群落结构和代谢途径。40 mT 的 SMF 将 DNRA 的启动时间从 75 天缩短到 41 天,而 80 mT 的 SMF 则将 DNRA 的启动时间延迟到 103 天。在第 80 天,40 mT SMF 下的 DNRA 潜能率达到 174 ± 11 μmol kg-1 h-1,明显超过 0 mT(88 ± 6 μmol kg-1 h-1)和 80 mT SMF(52 ± 4 μmol kg-1 h-1)。qPCR 结果表明,在第 40 天,40 mT SMF 促进了 DNRA 功能基因 nrfA 的快速富集,80 mT SMF 促进了 nirS 基因的富集。Thauera sp. RT1901、Stutzerimonas stutzeri、Shewanella oneidensis MR-1 和 Shewanella loihica PV-4 在转录水平上对 SMF 的动态响应证实,SMF 可提高 DNRA 和反硝化细菌的脱氮和电子传递能力。因此,这项工作验证了使用 SMF 改善 DNRA 过程以回收氨氮的可能性,并研究了其潜在机制,这将促进 DNRA 的全面应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
期刊最新文献
Performance of on-site flow cytometry for near-real-time microbiological analysis of alpine karst drinking water resources Scalable predictive framework for environmental pathogen control in land-based aquaculture Skin-replaceable antifouling cellulose ceramic membranes from jute agro-waste for sustainable and efficient oily wastewater treatment Decoupling antibiotic degradation from resistance development: photogranules act as a biocontainment for ARGs in wastewater Wastewater–phosphorus coupling accelerates biofilm–mineral–particulate interactions in irrigation pipelines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1