Multilayered Computational Framework for Designing Peptide Inhibitors of HVEM-LIGHT Interaction.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2024-07-03 DOI:10.1021/acs.jpcb.4c02255
Piotr Ciura, Pamela Smardz, Marta Spodzieja, Adam K Sieradzan, Pawel Krupa
{"title":"Multilayered Computational Framework for Designing Peptide Inhibitors of HVEM-LIGHT Interaction.","authors":"Piotr Ciura, Pamela Smardz, Marta Spodzieja, Adam K Sieradzan, Pawel Krupa","doi":"10.1021/acs.jpcb.4c02255","DOIUrl":null,"url":null,"abstract":"<p><p>The herpesvirus entry mediator (HVEM) and its ligand LIGHT play crucial roles in immune system regulation, including T-cell proliferation, B-cell differentiation, and immunoglobulin secretion. However, excessive T-cell activation can lead to chronic inflammation and autoimmune diseases. Thus, inhibiting the HVEM-LIGHT interaction emerges as a promising therapeutic strategy for these conditions and in preventing adverse reactions in organ transplantation. This study focused on designing peptide inhibitors, targeting the HVEM-LIGHT interaction, using molecular dynamics (MD) simulations of 65 peptides derived from HVEM. These peptides varied in length and disulfide-bond configurations, crucial for their interaction with the LIGHT trimer. By simulating 31 HVEM domain variants, including the full-length protein, we assessed conformational changes upon LIGHT binding to understand the influence of HVEM segments and disulfide bonds on the binding mechanism. Employing multitrajectory microsecond-scale, all-atom MD simulations and molecular mechanics with generalized Born and surface area (MM-GBSA) binding energy estimation, we identified promising CRD2 domain variants with high LIGHT affinity. Notably, point mutations in these variants led to a peptide with a single disulfide bond (C58-C73) and a K54E substitution, exhibiting the highest binding affinity. The importance of the CRD2 domain and Cys58-Cys73 disulfide bond for interrupting HVEM-LIGHT interaction was further supported by analyzing truncated CRD2 variants, demonstrating similar binding strengths and mechanisms. Further investigations into the binding mechanism utilized steered MD simulations at various pulling speeds and umbrella sampling to estimate the energy profile of HVEM-based inhibitors with LIGHT. These comprehensive analyses revealed key interactions and different binding mechanisms, highlighting the increased binding affinity of selected peptide variants. Experimental circular dichroism techniques confirmed the structural properties of these variants. This study not only advances our understanding of the molecular basis of HVEM-LIGHT interactions but also provides a foundation for developing novel therapeutic strategies for immune-related disorders. Furthermore, it sets a gold standard for peptide inhibitor design in drug development due to its systematic approach.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c02255","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The herpesvirus entry mediator (HVEM) and its ligand LIGHT play crucial roles in immune system regulation, including T-cell proliferation, B-cell differentiation, and immunoglobulin secretion. However, excessive T-cell activation can lead to chronic inflammation and autoimmune diseases. Thus, inhibiting the HVEM-LIGHT interaction emerges as a promising therapeutic strategy for these conditions and in preventing adverse reactions in organ transplantation. This study focused on designing peptide inhibitors, targeting the HVEM-LIGHT interaction, using molecular dynamics (MD) simulations of 65 peptides derived from HVEM. These peptides varied in length and disulfide-bond configurations, crucial for their interaction with the LIGHT trimer. By simulating 31 HVEM domain variants, including the full-length protein, we assessed conformational changes upon LIGHT binding to understand the influence of HVEM segments and disulfide bonds on the binding mechanism. Employing multitrajectory microsecond-scale, all-atom MD simulations and molecular mechanics with generalized Born and surface area (MM-GBSA) binding energy estimation, we identified promising CRD2 domain variants with high LIGHT affinity. Notably, point mutations in these variants led to a peptide with a single disulfide bond (C58-C73) and a K54E substitution, exhibiting the highest binding affinity. The importance of the CRD2 domain and Cys58-Cys73 disulfide bond for interrupting HVEM-LIGHT interaction was further supported by analyzing truncated CRD2 variants, demonstrating similar binding strengths and mechanisms. Further investigations into the binding mechanism utilized steered MD simulations at various pulling speeds and umbrella sampling to estimate the energy profile of HVEM-based inhibitors with LIGHT. These comprehensive analyses revealed key interactions and different binding mechanisms, highlighting the increased binding affinity of selected peptide variants. Experimental circular dichroism techniques confirmed the structural properties of these variants. This study not only advances our understanding of the molecular basis of HVEM-LIGHT interactions but also provides a foundation for developing novel therapeutic strategies for immune-related disorders. Furthermore, it sets a gold standard for peptide inhibitor design in drug development due to its systematic approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计 HVEM-LIGHT 相互作用多肽抑制剂的多层计算框架。
疱疹病毒入口介质(HVEM)及其配体 LIGHT 在免疫系统调节中发挥着至关重要的作用,包括 T 细胞增殖、B 细胞分化和免疫球蛋白分泌。然而,T 细胞的过度活化会导致慢性炎症和自身免疫性疾病。因此,抑制 HVEM-LIGHT 相互作用成为治疗这些疾病和预防器官移植不良反应的一种有前景的治疗策略。这项研究的重点是利用分子动力学(MD)模拟 65 种来自 HVEM 的肽,设计出针对 HVEM-LIGHT 相互作用的肽抑制剂。这些肽的长度和二硫键构型各不相同,这对它们与 LIGHT 三聚体的相互作用至关重要。通过模拟包括全长蛋白在内的31个HVEM结构域变体,我们评估了与LIGHT结合后的构象变化,以了解HVEM片段和二硫键对结合机制的影响。通过多轨迹微秒尺度全原子 MD 模拟和分子力学与广义玻恩和表面积(MM-GBSA)结合能估算,我们发现了具有高 LIGHT 亲和力的 CRD2 结构域变体。值得注意的是,这些变体中的点突变导致具有单个二硫键(C58-C73)和 K54E 取代的肽表现出最高的结合亲和力。通过分析截短的 CRD2 变体,进一步证实了 CRD2 结构域和 Cys58-Cys73 二硫键在中断 HVEM-LIGHT 相互作用方面的重要性,这些变体显示出相似的结合强度和机制。对结合机制的进一步研究利用了不同拉动速度下的定向 MD 模拟和伞状采样来估算基于 HVEM 的抑制剂与 LIGHT 的能量曲线。这些综合分析揭示了关键的相互作用和不同的结合机制,突出显示了所选肽变体结合亲和力的提高。实验性圆二色性技术证实了这些变体的结构特性。这项研究不仅加深了我们对 HVEM-LIGHT 相互作用的分子基础的理解,还为开发治疗免疫相关疾病的新型疗法奠定了基础。此外,由于采用了系统的方法,它还为药物开发中的肽抑制剂设计树立了一个黄金标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
A Joint Experimental and Theoretical Study on the Structural and Spectroscopic Properties of the Piv-Pro-d-Ser-NHMe Peptide. Optimizing Force Fields with Experimental Data Using Ensemble Reweighting and Potential Contrasting. Issue Publication Information Issue Editorial Masthead Counterion Release from Macroion Assemblies of Planar Geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1