All-in-One: Plasmonic Janus Heterostructures for Efficient Cooperative Photoredox Catalysis.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-07-03 DOI:10.1002/anie.202408527
Chuang Han, Zikang Zeng, Xiaorui Zhang, Yujun Liang, Bidyut Kumar Kundu, Lan Yuan, Chang-Long Tan, Yi Zhang, Yi-Jun Xu
{"title":"All-in-One: Plasmonic Janus Heterostructures for Efficient Cooperative Photoredox Catalysis.","authors":"Chuang Han, Zikang Zeng, Xiaorui Zhang, Yujun Liang, Bidyut Kumar Kundu, Lan Yuan, Chang-Long Tan, Yi Zhang, Yi-Jun Xu","doi":"10.1002/anie.202408527","DOIUrl":null,"url":null,"abstract":"<p><p>Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles (NPs) and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2% at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202408527","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Janus heterostructures consisting of multiple jointed components with distinct properties have gained growing interest in the photoredox catalytic field. Herein, we have developed a facile low-temperature method to gain anisotropic one-dimensional Au-tipped CdS (Au-CdS) nanorods (NRs), followed by assembling Ru molecular co-catalyst (RuN5) onto the surface of the NRs. The CdS NRs decorated with plasmonic Au nanoparticles (NPs) and RuN5 complex harness the virtues of metal-semiconductor and inorganic-organic interface, giving directional charge transfer channels, spatially separated reaction sites, and enhanced local electric field distribution. As a result, the Au-CdS-RuN5 can act as an efficient dual-function photocatalyst for simultaneous H2 evolution and valorization of biomass-derived alcohols. Benefiting from the interfacial charge decoupling and selective chemical bond activation, the optimal all-in-one Au-CdS-RuN5 heterostructure shows greatly enhanced photoactivity and selectivity as compared to bare CdS NRs, along with a remarkable apparent quantum yield of 40.2% at 400 nm. The structural evolution and working mechanism of the heterostructures are systematically analyzed based on experimental and computational results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一体化:用于高效合作光氧化催化的等离子体 Janus 异质结构。
在光氧化催化领域,由多种具有不同性质的连接成分组成的杰纳斯异质结构越来越受到关注。在此,我们开发了一种简便的低温方法来获得各向异性的一维金尖 CdS(Au-CdS)纳米棒(NRs),然后在 NRs 表面组装 Ru 分子助催化剂(RuN5)。用等离子金纳米粒子(NPs)和 RuN5 复合物装饰的 CdS NRs 利用了金属-半导体和无机-有机界面的优点,提供了定向电荷转移通道、空间分离的反应位点和增强的局部电场分布。因此,Au-CdS-RuN5 可作为一种高效的双功能光催化剂,同时实现 H2 的进化和生物质衍生醇的价值化。得益于界面电荷解耦和选择性化学键活化,最佳的一体化 Au-CdS-RuN5 异质结构与裸 CdS NR 相比,大大提高了光活性和选择性,在 400 纳米波长下的表观量子产率高达 40.2%。基于实验和计算结果,系统分析了异质结构的结构演变和工作机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Recent Progress in Using Covalent Organic Frameworks to Stabilize Metal Anodes for Highly-Efficient Rechargeable Batteries. Lewis Acid-Tethered (cAAC)-Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO2 Hydrogenation. Phosphonium Iodide Featuring Blue Thermally Activated Delayed Fluorescence for Highly Efficient X-ray Scintillator. Pnictogen-Bonding Enzymes. Ribosome-Free Translation up to Pentapeptides via Template Walk on RNA Sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1