Cascade Synthesis of Fe-N2-Fe Dual-Atom Catalysts for Superior Oxygen Catalysis.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-07-03 DOI:10.1002/anie.202408914
Mingkai Liu, Shuang Zhao, Minjie Liu, Zehua Qu, Yan Yan, Zhirong Zhang, Jifeng Yang, Siyuan He, Zhou Xu, Yiquan Zhu, Laihao Luo, Kwun Nam Hui, Jie Zeng
{"title":"Cascade Synthesis of Fe-N2-Fe Dual-Atom Catalysts for Superior Oxygen Catalysis.","authors":"Mingkai Liu, Shuang Zhao, Minjie Liu, Zehua Qu, Yan Yan, Zhirong Zhang, Jifeng Yang, Siyuan He, Zhou Xu, Yiquan Zhu, Laihao Luo, Kwun Nam Hui, Jie Zeng","doi":"10.1002/anie.202408914","DOIUrl":null,"url":null,"abstract":"<p><p>Dual-atom catalysts (DACs) have been proposed to break the limitation of single-atom catalysts (SACs) in the synergistic activation of multiple molecules and intermediates, offering an additional degree of freedom for catalytic regulation. However, it remains a challenge to synthesize DACs with high uniformity, atomic accuracy, and satisfactory loadings. Herein, we report a facile cascade synthetic strategy for DAC via precise electrostatic interaction control and neighboring vacancy construction. We synthesized well-defined, uniformly dispersed dual Fe sites which were connected by two nitrogen bonds (denoted as Fe-N2-Fe). The as-synthesized DAC exhibited superior catalytic performances towards oxygen reduction reaction, including good half-wave potential (0.91 V), high kinetic current density (21.66 mA cm-2), and perfect durability. Theoretical calculation revealed that the DAC structure effectively tunes the oxygen adsorption configuration and decreases the cleavage barrier, thereby improving the catalytic kinetics. The DAC-based zinc-air batteries exhibited impressive power densities of 169.8 and 52.18 mW cm-2 at 25 oC and -40 oC, which is 1.7 and 2.0 times higher than those based on Pt/C+Ir/C, respectively. We also demonstrated the universality of our strategy in synthesizing other M-N2-M DACs (M= Co, Cu, Ru, Pd, Pt, and Au), facilitating the construction of a DAC library for different catalytic applications.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202408914","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dual-atom catalysts (DACs) have been proposed to break the limitation of single-atom catalysts (SACs) in the synergistic activation of multiple molecules and intermediates, offering an additional degree of freedom for catalytic regulation. However, it remains a challenge to synthesize DACs with high uniformity, atomic accuracy, and satisfactory loadings. Herein, we report a facile cascade synthetic strategy for DAC via precise electrostatic interaction control and neighboring vacancy construction. We synthesized well-defined, uniformly dispersed dual Fe sites which were connected by two nitrogen bonds (denoted as Fe-N2-Fe). The as-synthesized DAC exhibited superior catalytic performances towards oxygen reduction reaction, including good half-wave potential (0.91 V), high kinetic current density (21.66 mA cm-2), and perfect durability. Theoretical calculation revealed that the DAC structure effectively tunes the oxygen adsorption configuration and decreases the cleavage barrier, thereby improving the catalytic kinetics. The DAC-based zinc-air batteries exhibited impressive power densities of 169.8 and 52.18 mW cm-2 at 25 oC and -40 oC, which is 1.7 and 2.0 times higher than those based on Pt/C+Ir/C, respectively. We also demonstrated the universality of our strategy in synthesizing other M-N2-M DACs (M= Co, Cu, Ru, Pd, Pt, and Au), facilitating the construction of a DAC library for different catalytic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
级联合成 Fe-N2-Fe 双原子催化剂以实现卓越的氧催化。
双原子催化剂(DAC)的提出打破了单原子催化剂(SAC)在协同活化多种分子和中间产物方面的局限性,为催化调节提供了额外的自由度。然而,合成具有高均匀性、原子精度和令人满意的负载量的 DACs 仍然是一项挑战。在此,我们报告了一种通过精确的静电相互作用控制和邻位空位构建实现 DAC 的简便级联合成策略。我们合成了定义明确、均匀分散的双铁位点,这些位点通过两个氮键连接(表示为 Fe-N2-Fe)。合成的 DAC 对氧还原反应具有优异的催化性能,包括良好的半波电位(0.91 V)、较高的动力学电流密度(21.66 mA cm-2)和完美的耐久性。理论计算表明,DAC 结构有效地调整了氧吸附构型,降低了裂解势垒,从而改善了催化动力学。基于 DAC 的锌-空气电池在 25 oC 和 -40 oC 温度下分别表现出 169.8 和 52.18 mW cm-2 的惊人功率密度,分别是基于 Pt/C+Ir/C 的电池的 1.7 倍和 2.0 倍。我们还证明了我们的策略在合成其他 M-N2-M DAC(M= Co、Cu、Ru、Pd、Pt 和 Au)方面的通用性,从而有助于构建一个适用于不同催化应用的 DAC 库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Recent Progress in Using Covalent Organic Frameworks to Stabilize Metal Anodes for Highly-Efficient Rechargeable Batteries. Lewis Acid-Tethered (cAAC)-Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO2 Hydrogenation. Phosphonium Iodide Featuring Blue Thermally Activated Delayed Fluorescence for Highly Efficient X-ray Scintillator. Pnictogen-Bonding Enzymes. Ribosome-Free Translation up to Pentapeptides via Template Walk on RNA Sequences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1