Sensitive detection of uric acid based on low-triggering-potential cathodic luminol electrochemiluminescence achieved by ReS2 nanosheets

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Analytical and Bioanalytical Chemistry Pub Date : 2024-07-01 DOI:10.1007/s00216-024-05414-6
Yahui Zhang, Xinyi Wang, Changbo Jia, Yongping Dong
{"title":"Sensitive detection of uric acid based on low-triggering-potential cathodic luminol electrochemiluminescence achieved by ReS2 nanosheets","authors":"Yahui Zhang,&nbsp;Xinyi Wang,&nbsp;Changbo Jia,&nbsp;Yongping Dong","doi":"10.1007/s00216-024-05414-6","DOIUrl":null,"url":null,"abstract":"<div><p>The majority of previously reported cathodic electrochemiluminescence (ECL) systems often required very negative potential to be carried out, which has greatly limited their applications in the sensing field. Screening high-performance cathodic ECL systems with low triggering potential is a promising way to broaden their applications. In this work, rhenium disulfide nanosheets (ReS<sub>2</sub> NS) have been revealed as an efficient co-promoter to realize low-triggering-potential cathodic luminol ECL. One strong cathodic ECL signal appeared at a potential of −0.3 V and one anodic ECL peak was obtained at −0.15 V under the reverse potential scan, which were caused by electrogenerated reactive oxygen species (ROS) from hydrogen peroxide. The generation of strong luminol ECL at low potential was the result of the electrocatalytic effect of ReS<sub>2</sub> NS on the reduction of H<sub>2</sub>O<sub>2</sub>. The scavenging effect of uric acid (UA) on the ROS could significantly inhibit the cathodic ECL. As a result, an ECL sensor was proposed, which showed outstanding performance for the detection of UA in the range of 10 nM to 0.1 mM with a low detection limit of 1.53 nM. Moreover, the ECL sensor was successfully applied in the sensitive detection of UA in real samples. This work provides a new avenue to establish a low-potential cathodic ECL system, which will sufficiently expand the potential application of cathodic ECL in the sensing field.</p></div>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":"416 22","pages":"4887 - 4896"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00216-024-05414-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The majority of previously reported cathodic electrochemiluminescence (ECL) systems often required very negative potential to be carried out, which has greatly limited their applications in the sensing field. Screening high-performance cathodic ECL systems with low triggering potential is a promising way to broaden their applications. In this work, rhenium disulfide nanosheets (ReS2 NS) have been revealed as an efficient co-promoter to realize low-triggering-potential cathodic luminol ECL. One strong cathodic ECL signal appeared at a potential of −0.3 V and one anodic ECL peak was obtained at −0.15 V under the reverse potential scan, which were caused by electrogenerated reactive oxygen species (ROS) from hydrogen peroxide. The generation of strong luminol ECL at low potential was the result of the electrocatalytic effect of ReS2 NS on the reduction of H2O2. The scavenging effect of uric acid (UA) on the ROS could significantly inhibit the cathodic ECL. As a result, an ECL sensor was proposed, which showed outstanding performance for the detection of UA in the range of 10 nM to 0.1 mM with a low detection limit of 1.53 nM. Moreover, the ECL sensor was successfully applied in the sensitive detection of UA in real samples. This work provides a new avenue to establish a low-potential cathodic ECL system, which will sufficiently expand the potential application of cathodic ECL in the sensing field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 ReS2 纳米片实现的低触发电位阴极发光酚电化学发光的尿酸灵敏检测。
之前报道的大多数阴极电化学发光(ECL)系统往往需要非常负的电位才能进行,这大大限制了它们在传感领域的应用。筛选具有低触发电位的高性能阴极电化学发光系统是拓宽其应用领域的一条可行途径。在这项工作中,二硫化铼纳米片(ReS2 NS)被发现是实现低触发电位阴极发光酚 ECL 的高效协同促进剂。在反向电位扫描下,一个强烈的阴极ECL信号出现在-0.3 V的电位上,一个阳极ECL峰出现在-0.15 V的电位上,这是由过氧化氢电生活性氧(ROS)引起的。在低电位下产生强烈的发光酚 ECL 是 ReS2 NS 对 H2O2 还原的电催化作用的结果。尿酸(UA)对 ROS 的清除作用可显著抑制阴极 ECL。因此,我们提出了一种 ECL 传感器,它在检测 10 nM 至 0.1 mM 范围内的 UA 方面表现出色,检测限低至 1.53 nM。此外,该 ECL 传感器还成功应用于实际样品中 UA 的灵敏检测。这项工作为建立低电位阴极电化学发光系统提供了一条新途径,将充分拓展阴极电化学发光在传感领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
Curcumin
阿拉丁
Histidine
阿拉丁
Nitroblue tetrazolium (NBT)
阿拉丁
Hydroxylamine hydrochloride
阿拉丁
Sodium perrhenate
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
期刊最新文献
Multivariate optimization for preconcentration and ICP-MS determination of rare earth elements, including anthropogenic gadolinium, in tap water. Quantification of serum myoglobin by liquid chromatography-isotope dilution mass spectrometry. Combined metallomics and metabolomics reveal impact of metal homeostasis on biological pathways in C. elegans. A self-calibrated electrochemical aptasensor based on DNA-mediated Au/PB NFs and Pt/ZnCo MOF for the detection of OTA. Advancing fecal volatilome profiling by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and image pattern recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1