Fernando O Carreño, Jacqueline G Gerhart, Victória E Helfer, Jaydeep Sinha, Karan R Kumar, Carl Kirkpatrick, Christoph P Hornik, Daniel Gonzalez
{"title":"Characterizing Enoxaparin's Population Pharmacokinetics to Guide Dose Individualization in the Pediatric Population.","authors":"Fernando O Carreño, Jacqueline G Gerhart, Victória E Helfer, Jaydeep Sinha, Karan R Kumar, Carl Kirkpatrick, Christoph P Hornik, Daniel Gonzalez","doi":"10.1007/s40262-024-01388-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Pediatric dosing of enoxaparin was derived based on extrapolation of the adult therapeutic range to children. However, a large fraction of children do not achieve therapeutic anticoagulation with initial dosing. We aim to use real-world anti-Xa data obtained from children receiving enoxaparin per standard of care to characterize the population pharmacokinetics (PopPK).Author names: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct.The author names are accurately presented and the metadata are correct. METHODS: A PopPK analysis was performed using NONMEM, and a stepwise covariate modeling approach was applied for the covariate selection. The final PopPK model, developed with data from 1293 patients ranging in age from 1 day to 18 years, was used to simulate enoxaparin subcutaneous dosing for prophylaxis and treatment based on total body weight (0-18 years, TBW) or fat-free mass (2-18 years, FFM). Simulated exposures in children with obesity (body mass index percentile ≥95th percentile) were compared with those without obesity.</p><p><strong>Results: </strong>A linear, one-compartment PopPK model that included allometric scaling using TBW (<2 years) or FFM (≥2 years) characterized the enoxaparin pharmacokinetic data. In addition, serum creatinine was identified as a significant covariate influencing clearance. Simulations indicated that in patients aged <2 years, the recommended 1.5 mg/kg TBW-based dosing achieves therapeutic simulated concentrations. In pediatric patients aged ≥2 years, the recommended 1.0 mg/kg dose resulted in exposures more comparable in children with and without obesity when FFM weight-based dosing was applied.</p><p><strong>Conclusion: </strong>Using real-world data and PopPK modeling, enoxaparin's pharmacokinetics were characterized in pediatric patients. Using FFM and twice-daily dosing might reduce the risk of overdosing, especially in children with obesity.</p>","PeriodicalId":10405,"journal":{"name":"Clinical Pharmacokinetics","volume":" ","pages":"999-1014"},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11288483/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40262-024-01388-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objective: Pediatric dosing of enoxaparin was derived based on extrapolation of the adult therapeutic range to children. However, a large fraction of children do not achieve therapeutic anticoagulation with initial dosing. We aim to use real-world anti-Xa data obtained from children receiving enoxaparin per standard of care to characterize the population pharmacokinetics (PopPK).Author names: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct.The author names are accurately presented and the metadata are correct. METHODS: A PopPK analysis was performed using NONMEM, and a stepwise covariate modeling approach was applied for the covariate selection. The final PopPK model, developed with data from 1293 patients ranging in age from 1 day to 18 years, was used to simulate enoxaparin subcutaneous dosing for prophylaxis and treatment based on total body weight (0-18 years, TBW) or fat-free mass (2-18 years, FFM). Simulated exposures in children with obesity (body mass index percentile ≥95th percentile) were compared with those without obesity.
Results: A linear, one-compartment PopPK model that included allometric scaling using TBW (<2 years) or FFM (≥2 years) characterized the enoxaparin pharmacokinetic data. In addition, serum creatinine was identified as a significant covariate influencing clearance. Simulations indicated that in patients aged <2 years, the recommended 1.5 mg/kg TBW-based dosing achieves therapeutic simulated concentrations. In pediatric patients aged ≥2 years, the recommended 1.0 mg/kg dose resulted in exposures more comparable in children with and without obesity when FFM weight-based dosing was applied.
Conclusion: Using real-world data and PopPK modeling, enoxaparin's pharmacokinetics were characterized in pediatric patients. Using FFM and twice-daily dosing might reduce the risk of overdosing, especially in children with obesity.
期刊介绍:
Clinical Pharmacokinetics promotes the continuing development of clinical pharmacokinetics and pharmacodynamics for the improvement of drug therapy, and for furthering postgraduate education in clinical pharmacology and therapeutics.
Pharmacokinetics, the study of drug disposition in the body, is an integral part of drug development and rational use. Knowledge and application of pharmacokinetic principles leads to accelerated drug development, cost effective drug use and a reduced frequency of adverse effects and drug interactions.