Identifying discriminative features of brain network for prediction of Alzheimer's disease using graph theory and machine learning.

IF 2.5 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Frontiers in Neuroinformatics Pub Date : 2024-06-18 eCollection Date: 2024-01-01 DOI:10.3389/fninf.2024.1384720
S M Shayez Karim, Md Shah Fahad, R S Rathore
{"title":"Identifying discriminative features of brain network for prediction of Alzheimer's disease using graph theory and machine learning.","authors":"S M Shayez Karim, Md Shah Fahad, R S Rathore","doi":"10.3389/fninf.2024.1384720","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a challenging neurodegenerative condition, necessitating early diagnosis and intervention. This research leverages machine learning (ML) and graph theory metrics, derived from resting-state functional magnetic resonance imaging (rs-fMRI) data to predict AD. Using Southwest University Adult Lifespan Dataset (SALD, age 21-76 years) and the Open Access Series of Imaging Studies (OASIS, age 64-95 years) dataset, containing 112 participants, various ML models were developed for the purpose of AD prediction. The study identifies key features for a comprehensive understanding of brain network topology and functional connectivity in AD. Through a 5-fold cross-validation, all models demonstrate substantial predictive capabilities (accuracy in 82-92% range), with the support vector machine model standing out as the best having an accuracy of 92%. Present study suggests that top 13 regions, identified based on most important discriminating features, have lost significant connections with thalamus. The functional connection strengths were consistently declined for substantia nigra, pars reticulata, substantia nigra, pars compacta, and nucleus accumbens among AD subjects as compared to healthy adults and aging individuals. The present finding corroborate with the earlier studies, employing various neuroimagining techniques. This research signifies the translational potential of a comprehensive approach integrating ML, graph theory and rs-fMRI analysis in AD prediction, offering potential biomarker for more accurate diagnostics and early prediction of AD.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1384720"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11217540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1384720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a challenging neurodegenerative condition, necessitating early diagnosis and intervention. This research leverages machine learning (ML) and graph theory metrics, derived from resting-state functional magnetic resonance imaging (rs-fMRI) data to predict AD. Using Southwest University Adult Lifespan Dataset (SALD, age 21-76 years) and the Open Access Series of Imaging Studies (OASIS, age 64-95 years) dataset, containing 112 participants, various ML models were developed for the purpose of AD prediction. The study identifies key features for a comprehensive understanding of brain network topology and functional connectivity in AD. Through a 5-fold cross-validation, all models demonstrate substantial predictive capabilities (accuracy in 82-92% range), with the support vector machine model standing out as the best having an accuracy of 92%. Present study suggests that top 13 regions, identified based on most important discriminating features, have lost significant connections with thalamus. The functional connection strengths were consistently declined for substantia nigra, pars reticulata, substantia nigra, pars compacta, and nucleus accumbens among AD subjects as compared to healthy adults and aging individuals. The present finding corroborate with the earlier studies, employing various neuroimagining techniques. This research signifies the translational potential of a comprehensive approach integrating ML, graph theory and rs-fMRI analysis in AD prediction, offering potential biomarker for more accurate diagnostics and early prediction of AD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图论和机器学习识别大脑网络的判别特征以预测阿尔茨海默病。
阿尔茨海默病(AD)是一种具有挑战性的神经退行性疾病,需要早期诊断和干预。这项研究利用从静息态功能磁共振成像(rs-fMRI)数据中得出的机器学习(ML)和图论指标来预测阿尔茨海默病。利用西南大学成人生命期数据集(SALD,21-76 岁)和开放获取系列成像研究数据集(OASIS,64-95 岁)(包含 112 名参与者),开发了各种 ML 模型,用于预测注意力缺失症。该研究确定了全面了解注意力缺失症大脑网络拓扑和功能连接的关键特征。通过 5 倍交叉验证,所有模型都显示出了很强的预测能力(准确率在 82-92% 之间),其中支持向量机模型的准确率高达 92%,是最佳模型。目前的研究表明,根据最重要的判别特征确定的前 13 个区域已经失去了与丘脑的重要联系。与健康成人和老龄人相比,AD 受试者的黑质、网状旁、黑质、紧密旁和伏隔核的功能连接强度持续下降。本研究结果与之前采用各种神经成像技术进行的研究结果相吻合。这项研究表明,将 ML、图论和 rs-fMRI 分析相结合的综合方法在预测注意力缺失症方面具有转化潜力,可为更准确地诊断和早期预测注意力缺失症提供潜在的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neuroinformatics
Frontiers in Neuroinformatics MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
4.80
自引率
5.70%
发文量
132
审稿时长
14 weeks
期刊介绍: Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states. Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.
期刊最新文献
Quantitative assessment of neurodevelopmental maturation: a comprehensive systematic literature review of artificial intelligence-based brain age prediction in pediatric populations. Spectral graph convolutional neural network for Alzheimer's disease diagnosis and multi-disease categorization from functional brain changes in magnetic resonance images. Commentary: Accelerating spiking neural network simulations with PymoNNto and PymoNNtorch. Fuzzy C-means clustering algorithm applied in computed tomography images of patients with intracranial hemorrhage. Early detection of mild cognitive impairment through neuropsychological tests in population screenings: a decision support system integrating ontologies and machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1