Exploring mood disorders and treatment options using human stem cells.

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genetics and Molecular Biology Pub Date : 2024-07-01 eCollection Date: 2024-01-01 DOI:10.1590/1678-4685-GMB-2023-0305
Autumn Hudock, Zaira Paulina Leal, Amandeep Sharma, Arianna Mei, Renata Santos, Maria Carolina Marchetto
{"title":"Exploring mood disorders and treatment options using human stem cells.","authors":"Autumn Hudock, Zaira Paulina Leal, Amandeep Sharma, Arianna Mei, Renata Santos, Maria Carolina Marchetto","doi":"10.1590/1678-4685-GMB-2023-0305","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their global prevalence, the mechanisms for mood disorders like bipolar disorder and major depressive disorder remain largely misunderstood. Mood stabilizers and antidepressants, although useful and effective for some, do not have a high responsiveness rate across those with these conditions. One reason for low responsiveness to these drugs is patient heterogeneity, meaning there is diversity in patient characteristics relating to genetics, etiology, and environment affecting treatment. In the past two decades, novel induced pluripotent stem cell (iPSC) research and technology have enabled the use of human-derived brain cells as a new model to study human disease that can help account for patient variance. Human iPSC technology is an emerging tool to better understand the molecular mechanisms of these disorders as well as a platform to test novel treatments and existing pharmaceuticals. This literature review describes the use of iPSC technology to model bipolar and major depressive disorder, common medications used to treat these disorders, and novel patient-derived alternative treatment methods for non-responders stemming from past publications, as well as presenting new data derived from these models.</p>","PeriodicalId":12557,"journal":{"name":"Genetics and Molecular Biology","volume":"47Suppl 1 Suppl 1","pages":"e20230305"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0305","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite their global prevalence, the mechanisms for mood disorders like bipolar disorder and major depressive disorder remain largely misunderstood. Mood stabilizers and antidepressants, although useful and effective for some, do not have a high responsiveness rate across those with these conditions. One reason for low responsiveness to these drugs is patient heterogeneity, meaning there is diversity in patient characteristics relating to genetics, etiology, and environment affecting treatment. In the past two decades, novel induced pluripotent stem cell (iPSC) research and technology have enabled the use of human-derived brain cells as a new model to study human disease that can help account for patient variance. Human iPSC technology is an emerging tool to better understand the molecular mechanisms of these disorders as well as a platform to test novel treatments and existing pharmaceuticals. This literature review describes the use of iPSC technology to model bipolar and major depressive disorder, common medications used to treat these disorders, and novel patient-derived alternative treatment methods for non-responders stemming from past publications, as well as presenting new data derived from these models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人类干细胞探索情绪障碍和治疗方案。
尽管双相情感障碍和重度抑郁症等情绪障碍在全球普遍存在,但其发病机制在很大程度上仍被误解。情绪稳定剂和抗抑郁药虽然对某些人有用且有效,但对这些疾病患者的反应率并不高。患者对这些药物反应不佳的原因之一是患者的异质性,即与遗传、病因和环境有关的患者特征的多样性会影响治疗。在过去二十年里,新型诱导多能干细胞(iPSC)研究和技术使人源脑细胞成为研究人类疾病的新模型,有助于解释患者的差异。人类 iPSC 技术是一种新兴工具,可用于更好地了解这些疾病的分子机制,同时也是测试新型疗法和现有药物的平台。本文献综述介绍了 iPSC 技术在双相情感障碍和重度抑郁症模型中的应用、治疗这些疾病的常用药物、过去发表的文章中针对无应答患者的新型患者衍生替代治疗方法,以及从这些模型中获得的新数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics and Molecular Biology
Genetics and Molecular Biology 生物-生化与分子生物学
CiteScore
4.20
自引率
4.80%
发文量
111
审稿时长
3 months
期刊介绍: Genetics and Molecular Biology (formerly named Revista Brasileira de Genética/Brazilian Journal of Genetics - ISSN 0100-8455) is published by the Sociedade Brasileira de Genética (Brazilian Society of Genetics). The Journal considers contributions that present the results of original research in genetics, evolution and related scientific disciplines. Manuscripts presenting methods and applications only, without an analysis of genetic data, will not be considered.
期刊最新文献
Ethnicity-specific associations between the promoter region G-308A polymorphism (rs1800629) of the TNF-α gene and the development of end-stage renal disease: An evidence-based meta-analysis and trial sequential analysis. Male aging in germ cells: What are we inheriting? Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism. A variant W chromosome in Centromochlus heckelii (Siluriformes, Auchenipteridae) and the role of repeated DNA in its heteromorphism. Truncated SPAG9 as a novel candidate gene for a new syndrome: Coarse facial features, albinism, cataract and developmental delay (CACD syndrome).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1