Legume-rhizobia symbiosis: Translatome analysis.

IF 1.7 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Genetics and Molecular Biology Pub Date : 2024-07-01 eCollection Date: 2024-01-01 DOI:10.1590/1678-4685-GMB-2023-0284
María Martha Sainz, Mariana Sotelo-Silveira, Carla V Filippi, Sofía Zardo
{"title":"Legume-rhizobia symbiosis: Translatome analysis.","authors":"María Martha Sainz, Mariana Sotelo-Silveira, Carla V Filippi, Sofía Zardo","doi":"10.1590/1678-4685-GMB-2023-0284","DOIUrl":null,"url":null,"abstract":"<p><p>Leguminous plants can establish endosymbiotic relationships with nitrogen-fixing soil rhizobacteria. Bacterial infection and nodule organogenesis are two independent but highly coordinated genetic programs that are active during this interaction. These genetic programs can be regulated along all the stages of gene expression. Most of the studies, for both eukaryotes and prokaryotes, focused on the transcriptional regulation level determining the abundance of mRNAs. However, it has been demonstrated that mRNA levels only sometimes correlate with the abundance or activity of the coded proteins. For this reason, in the past two decades, interest in the role of translational control of gene expression has increased, since the subset of mRNA being actively translated outperforms the information gained only by the transcriptome. In the case of legume-rhizobia interactions, the study of the translatome still needs to be explored further. Therefore, this review aims to discuss the methodologies for analyzing polysome-associated mRNAs at the genome-scale and their contribution to studying translational control to understand the complexity of this symbiotic interaction. Moreover, the Dual RNA-seq approach is discussed for its relevance in the context of a symbiotic nodule, where intricate multi-species gene expression networks occur.</p>","PeriodicalId":12557,"journal":{"name":"Genetics and Molecular Biology","volume":"47Suppl 1 Suppl 1","pages":"e20230284"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1590/1678-4685-GMB-2023-0284","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leguminous plants can establish endosymbiotic relationships with nitrogen-fixing soil rhizobacteria. Bacterial infection and nodule organogenesis are two independent but highly coordinated genetic programs that are active during this interaction. These genetic programs can be regulated along all the stages of gene expression. Most of the studies, for both eukaryotes and prokaryotes, focused on the transcriptional regulation level determining the abundance of mRNAs. However, it has been demonstrated that mRNA levels only sometimes correlate with the abundance or activity of the coded proteins. For this reason, in the past two decades, interest in the role of translational control of gene expression has increased, since the subset of mRNA being actively translated outperforms the information gained only by the transcriptome. In the case of legume-rhizobia interactions, the study of the translatome still needs to be explored further. Therefore, this review aims to discuss the methodologies for analyzing polysome-associated mRNAs at the genome-scale and their contribution to studying translational control to understand the complexity of this symbiotic interaction. Moreover, the Dual RNA-seq approach is discussed for its relevance in the context of a symbiotic nodule, where intricate multi-species gene expression networks occur.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
豆科植物与根瘤菌的共生关系:翻译组分析。
豆科植物可以与土壤中的固氮根瘤菌建立内共生关系。细菌感染和结核器官发生是在这种相互作用过程中活跃的两个独立但高度协调的遗传程序。这些遗传程序可在基因表达的所有阶段受到调控。无论是真核生物还是原核生物,大多数研究都侧重于决定 mRNA 丰度的转录调控水平。然而,研究表明,mRNA 水平有时与编码蛋白质的丰度或活性相关。因此,在过去二十年中,人们对基因表达的翻译控制作用的兴趣日益浓厚,因为被积极翻译的 mRNA 子集比仅从转录组获得的信息更有价值。就豆科植物与根瘤菌的相互作用而言,对翻译组的研究仍需进一步探索。因此,本综述旨在讨论在基因组尺度上分析多聚体相关 mRNA 的方法及其对研究翻译控制的贡献,以了解这种共生相互作用的复杂性。此外,本文还讨论了双 RNA-seq 方法在共生结核中的相关性,因为共生结核中存在错综复杂的多物种基因表达网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetics and Molecular Biology
Genetics and Molecular Biology 生物-生化与分子生物学
CiteScore
4.20
自引率
4.80%
发文量
111
审稿时长
3 months
期刊介绍: Genetics and Molecular Biology (formerly named Revista Brasileira de Genética/Brazilian Journal of Genetics - ISSN 0100-8455) is published by the Sociedade Brasileira de Genética (Brazilian Society of Genetics). The Journal considers contributions that present the results of original research in genetics, evolution and related scientific disciplines. Manuscripts presenting methods and applications only, without an analysis of genetic data, will not be considered.
期刊最新文献
Ethnicity-specific associations between the promoter region G-308A polymorphism (rs1800629) of the TNF-α gene and the development of end-stage renal disease: An evidence-based meta-analysis and trial sequential analysis. Male aging in germ cells: What are we inheriting? Yaravirus brasiliense genomic structure analysis and its possible influence on the metabolism. A variant W chromosome in Centromochlus heckelii (Siluriformes, Auchenipteridae) and the role of repeated DNA in its heteromorphism. Truncated SPAG9 as a novel candidate gene for a new syndrome: Coarse facial features, albinism, cataract and developmental delay (CACD syndrome).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1