Population and community ecology: past progress and future directions.

IF 3.5 1区 生物学 Q1 ZOOLOGY Integrative zoology Pub Date : 2024-07-02 DOI:10.1111/1749-4877.12863
Charles J Krebs, Stan Boutin, Rudy Boonstra
{"title":"Population and community ecology: past progress and future directions.","authors":"Charles J Krebs, Stan Boutin, Rudy Boonstra","doi":"10.1111/1749-4877.12863","DOIUrl":null,"url":null,"abstract":"<p><p>Population and community ecology as a science are about 100 years old, and we discuss here our opinion of what approaches have progressed well and which point to possible future directions. The three major threads within population and community ecology are theoretical ecology, statistical tests and models, and experimental ecology. We suggest that our major objective is to understand what factors determine the distribution and abundance of organisms within populations and communities, and we evaluate these threads against this major objective. Theoretical ecology is elegant and compelling and has laid the groundwork for achieving our overall objectives with useful simple models. Statistics and statistical models have contributed informative methods to analyze quantitatively our understanding of distribution and abundance for future research. Population ecology is difficult to carry out in the field, even though we may have all the statistical methods and models needed to achieve results. Community ecology is growing rapidly with much description but less understanding of why changes occur. Biodiversity science cuts across all these subdivisions but rarely digs into the necessary population and community science that might solve conservation problems. Climate change affects all aspects of ecology but to assume that everything in population and community ecology is driven by climate change is oversimplified. We make recommendations on how to advance the field with advice for present and future generations of population and community ecologists.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12863","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Population and community ecology as a science are about 100 years old, and we discuss here our opinion of what approaches have progressed well and which point to possible future directions. The three major threads within population and community ecology are theoretical ecology, statistical tests and models, and experimental ecology. We suggest that our major objective is to understand what factors determine the distribution and abundance of organisms within populations and communities, and we evaluate these threads against this major objective. Theoretical ecology is elegant and compelling and has laid the groundwork for achieving our overall objectives with useful simple models. Statistics and statistical models have contributed informative methods to analyze quantitatively our understanding of distribution and abundance for future research. Population ecology is difficult to carry out in the field, even though we may have all the statistical methods and models needed to achieve results. Community ecology is growing rapidly with much description but less understanding of why changes occur. Biodiversity science cuts across all these subdivisions but rarely digs into the necessary population and community science that might solve conservation problems. Climate change affects all aspects of ecology but to assume that everything in population and community ecology is driven by climate change is oversimplified. We make recommendations on how to advance the field with advice for present and future generations of population and community ecologists.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
种群和群落生态学:过去的进展和未来的方向。
种群与群落生态学作为一门科学已有约 100 年的历史,我们在此讨论我们对哪些方法进展顺利以及哪些方法指明了未来可能的方向的看法。种群和群落生态学的三大主线是理论生态学、统计检验和模型以及实验生态学。我们认为,我们的主要目标是了解哪些因素决定了种群和群落中生物的分布和丰度,我们将根据这一主要目标来评估这些方法。理论生态学优雅而令人信服,为我们通过有用的简单模型实现总体目标奠定了基础。统计学和统计模型提供了信息丰富的方法,可定量分析我们对分布和丰度的理解,为今后的研究提供参考。尽管我们可能拥有取得成果所需的所有统计方法和模型,但在实地开展种群生态学研究却很困难。群落生态学发展迅速,描述很多,但对发生变化的原因了解较少。生物多样性科学横跨所有这些细分领域,但很少深入研究可能解决保护问题的必要种群和群落科学。气候变化影响生态学的方方面面,但假设种群和群落生态学中的一切都由气候变化驱动则过于简单化。我们就如何推动该领域的发展提出了建议,并为当代和后代的种群与群落生态学家提供了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.40
自引率
12.10%
发文量
81
审稿时长
>12 weeks
期刊介绍: The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society. Integrative topics of greatest interest to INZ include: (1) Animals & climate change (2) Animals & pollution (3) Animals & infectious diseases (4) Animals & biological invasions (5) Animal-plant interactions (6) Zoogeography & paleontology (7) Neurons, genes & behavior (8) Molecular ecology & evolution (9) Physiological adaptations
期刊最新文献
Synergistic Effects of Three-Species Symbiosis in Spiders. The Impact of Life-History Traits on Vulnerability to Extinction of the Oviparous Species in Reptiles. Issue Information cba-miR-222-3p involved in photoperiod-induced apoptosis in testes of striped hamsters by targeting TRAF7. Exploring riverine aquatic animal diversity and establishing aquatic ecological monitoring approaches tailored to the Qinling region via eDNA technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1