Increased Neuromuscular Activity, Force Output, and Resistance Exercise Volume When Using 5-Minute Compared with 2-Minute Rest Intervals Between the Sets.
Gerard McMahon, Nathan Best, Timothy Coulter, Robert M Erskine
{"title":"Increased Neuromuscular Activity, Force Output, and Resistance Exercise Volume When Using 5-Minute Compared with 2-Minute Rest Intervals Between the Sets.","authors":"Gerard McMahon, Nathan Best, Timothy Coulter, Robert M Erskine","doi":"10.1519/JSC.0000000000004832","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>McMahon, G, Best, N, Coulter, T, and Erskine, RM. Increased neuromuscular activation, force output and resistance exercise volume when using 5-minute compared with 2-minute rest intervals between the sets. J Strength Cond Res 38(9): 1527-1534, 2024-Longer rest intervals between resistance exercise (RE) sets may promote greater muscle hypertrophy and strength gains over time by facilitating the completion of greater training volume and intensity. However, little is known about the acute neuromuscular responses to RE sets incorporating longer vs. shorter rest intervals. Using a within-subject, crossover design, 8 healthy, young subjects completed 2 separate acute bouts of 4 sets of 8 × 3-s maximal isometric contractions using either a 2-minute (REST-2) or 5-minute (REST-5) rest interval between sets. Peak torque (PT) and electromyography (EMG) were measured pre and 5 minutes postexercise. Peak torque and mean torque (MT), EMG, mean, and median frequencies were measured during each set, whereas blood lactate (BLa), heart rate (HR), and rating of perceived exertion (RPE) were measured following each set. Peak torque and MT were lower ( p < 0.05) in sets 3 and 4, and sets 2-4 in REST-2 compared with REST-5, respectively. Electromyography and BL were lower and higher, respectively, in REST-2 vs. REST-5. There was no main effect of condition on HR or RPE. Pre-to-post exercise reductions in PT (-17 ± 9% vs. -4 ± 7%) and EMG (-29 ± 14% vs. -10 ± 7%) were greater ( p < 0.001) in REST-2 vs. REST-5. Total exercise volume was less in REST-2 vs. REST-5 (9,748 ± 2296 N·m -1 vs. 11,212 ± 2513 N·m -1 , p < 0.001). These results suggest that incorporating 5-minute between-set rest intervals into a resistance exercise session facilitates improved neuromuscular function, increased exercise volume, and less metabolic stress compared with 2-minute rest intervals. Thus, 5-minute rest intervals may be more efficacious for promoting muscle hypertrophy and strength gains in a chronic resistance training program.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1519/JSC.0000000000004832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: McMahon, G, Best, N, Coulter, T, and Erskine, RM. Increased neuromuscular activation, force output and resistance exercise volume when using 5-minute compared with 2-minute rest intervals between the sets. J Strength Cond Res 38(9): 1527-1534, 2024-Longer rest intervals between resistance exercise (RE) sets may promote greater muscle hypertrophy and strength gains over time by facilitating the completion of greater training volume and intensity. However, little is known about the acute neuromuscular responses to RE sets incorporating longer vs. shorter rest intervals. Using a within-subject, crossover design, 8 healthy, young subjects completed 2 separate acute bouts of 4 sets of 8 × 3-s maximal isometric contractions using either a 2-minute (REST-2) or 5-minute (REST-5) rest interval between sets. Peak torque (PT) and electromyography (EMG) were measured pre and 5 minutes postexercise. Peak torque and mean torque (MT), EMG, mean, and median frequencies were measured during each set, whereas blood lactate (BLa), heart rate (HR), and rating of perceived exertion (RPE) were measured following each set. Peak torque and MT were lower ( p < 0.05) in sets 3 and 4, and sets 2-4 in REST-2 compared with REST-5, respectively. Electromyography and BL were lower and higher, respectively, in REST-2 vs. REST-5. There was no main effect of condition on HR or RPE. Pre-to-post exercise reductions in PT (-17 ± 9% vs. -4 ± 7%) and EMG (-29 ± 14% vs. -10 ± 7%) were greater ( p < 0.001) in REST-2 vs. REST-5. Total exercise volume was less in REST-2 vs. REST-5 (9,748 ± 2296 N·m -1 vs. 11,212 ± 2513 N·m -1 , p < 0.001). These results suggest that incorporating 5-minute between-set rest intervals into a resistance exercise session facilitates improved neuromuscular function, increased exercise volume, and less metabolic stress compared with 2-minute rest intervals. Thus, 5-minute rest intervals may be more efficacious for promoting muscle hypertrophy and strength gains in a chronic resistance training program.