Quaternity method for integrated screening, separation, extraction optimization, and bioactivity evaluation of acetylcholinesterase inhibitors from Sophora flavescens Aiton.
Yutong Zhang, Yuchi Zhang, Sainan Li, Chunming Liu, Jiaqi Liang, Yuyu Nong, Ming Chen, Ruijun Sun
{"title":"Quaternity method for integrated screening, separation, extraction optimization, and bioactivity evaluation of acetylcholinesterase inhibitors from Sophora flavescens Aiton.","authors":"Yutong Zhang, Yuchi Zhang, Sainan Li, Chunming Liu, Jiaqi Liang, Yuyu Nong, Ming Chen, Ruijun Sun","doi":"10.1002/pca.3415","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects.</p><p><strong>Objectives: </strong>The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs.</p><p><strong>Methods: </strong>With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds.</p><p><strong>Results: </strong>Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect.</p><p><strong>Conclusion: </strong>This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.</p>","PeriodicalId":20095,"journal":{"name":"Phytochemical Analysis","volume":" ","pages":"52-67"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytochemical Analysis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pca.3415","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Sophora flavescens Aiton (Fabaceae), a ubiquitous plant species in Asia, contains a wide range of pharmacologically active compounds, such as flavonoids, with potential anti-Alzheimer's disease (anti-AD) effects.
Objectives: The objective of the study is to develop a quaternity method for the screening, isolation, extraction optimization, and activity evaluation of acetylcholinesterase (AChE)-inhibiting compounds from S. flavescens to realize high-throughput screening of active substances in traditional Chinese medicine and to provide experimental data for the development of anti-AD drugs.
Methods: With AChE as the target molecule, affinity ultrafiltration and liquid chromatography-mass spectrometry were applied to screen for potential inhibitors of the enzyme in S. flavescens. Orthogonal array experiments combined with the multi-objective Non-Dominated Sorting Genetic Algorithm III was used for the first time to optimize the process for extracting the active substances. Enzyme inhibition kinetics and molecular docking studies were performed to verify the potential anti-AD effects of the active compounds.
Results: Five AChE-inhibiting compounds were identified: kushenol I, kurarinone, sophoraflavanone G, isokurarinone, and kushenol E. These were successfully separated at purities of 72.88%, 98.55%, 96.86%, 96.74%, and 95.84%, respectively, using the n-hexane/ethyl acetate/methanol/water (4.0/5.0/4.0/5.0, v/v/v/v), n-hexane/ethyl acetate/methanol/water (5.0/5.0/6.0/4.0, v/v/v/v), and n-hexane/ethyl acetate/methanol/water (4.9/5.1/5.7/4.3, v/v/v/v) mobile phase systems. Enzyme inhibition kinetics revealed that kushenol E had the best inhibitory effect.
Conclusion: This study elucidates the mechanism of action of five active AChE inhibitors in S. flavescens and provides a theoretical basis for the screening and development of anti-AD and other therapeutic drugs.
期刊介绍:
Phytochemical Analysis is devoted to the publication of original articles concerning the development, improvement, validation and/or extension of application of analytical methodology in the plant sciences. The spectrum of coverage is broad, encompassing methods and techniques relevant to the detection (including bio-screening), extraction, separation, purification, identification and quantification of compounds in plant biochemistry, plant cellular and molecular biology, plant biotechnology, the food sciences, agriculture and horticulture. The Journal publishes papers describing significant novelty in the analysis of whole plants (including algae), plant cells, tissues and organs, plant-derived extracts and plant products (including those which have been partially or completely refined for use in the food, agrochemical, pharmaceutical and related industries). All forms of physical, chemical, biochemical, spectroscopic, radiometric, electrometric, chromatographic, metabolomic and chemometric investigations of plant products (monomeric species as well as polymeric molecules such as nucleic acids, proteins, lipids and carbohydrates) are included within the remit of the Journal. Papers dealing with novel methods relating to areas such as data handling/ data mining in plant sciences will also be welcomed.