Leading-edge curvature effect on aerodynamic performance of flapping wings in hover and forward flight.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-07-15 DOI:10.1088/1748-3190/ad5e50
Reynolds Addo-Akoto, Jong-Seob Han, Jae-Hung Han
{"title":"Leading-edge curvature effect on aerodynamic performance of flapping wings in hover and forward flight.","authors":"Reynolds Addo-Akoto, Jong-Seob Han, Jae-Hung Han","doi":"10.1088/1748-3190/ad5e50","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the role of leading-edge (LE) curvature in flapping wing aerodynamics considering hovering and forward flight conditions. A scaled-up robotic model is towed along its longitudinal axis by a rack gear carriage system. The forward velocity of the robotic model is changed by varying the advance ratio<i>J</i>from 0 (hovering) to 1.0. The study reveals that the LE curvature has insignificant influence on the cycle-average aerodynamic lift and drag. However, the time-history lift coefficient shows that the curvature can enhance the lift around the middle of downstroke. This enhanced lift is reduced from 5% to 1.2% as<i>J</i>changed from 0 to 1.0. Further flow examinations reveal that the LE curvature is beneficial by enhancing circulation only at the outboard wing sections. The enhanced outboard circulation is found to emanate from the less stretched leading-edge vortices (LEVs), weakened trailing-edge vortices (TEVs), and the coherent merging of the tip vortices (TVs) with the minor LEVs as observed from the phase-lock planar digital particle image velocimetry measurements. The far-wake observation shows that the LE curvature enhances the vorticity within the TV, helping to reduce the overall flow fluctuations in the far field. These findings can be extended to explain the predominantly straight LE wing shape with a small amount of curvature only observed near the wing tip for flapping fliers with Re from 10<sup>3</sup>to 10<sup>4</sup>.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad5e50","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the role of leading-edge (LE) curvature in flapping wing aerodynamics considering hovering and forward flight conditions. A scaled-up robotic model is towed along its longitudinal axis by a rack gear carriage system. The forward velocity of the robotic model is changed by varying the advance ratioJfrom 0 (hovering) to 1.0. The study reveals that the LE curvature has insignificant influence on the cycle-average aerodynamic lift and drag. However, the time-history lift coefficient shows that the curvature can enhance the lift around the middle of downstroke. This enhanced lift is reduced from 5% to 1.2% asJchanged from 0 to 1.0. Further flow examinations reveal that the LE curvature is beneficial by enhancing circulation only at the outboard wing sections. The enhanced outboard circulation is found to emanate from the less stretched leading-edge vortices (LEVs), weakened trailing-edge vortices (TEVs), and the coherent merging of the tip vortices (TVs) with the minor LEVs as observed from the phase-lock planar digital particle image velocimetry measurements. The far-wake observation shows that the LE curvature enhances the vorticity within the TV, helping to reduce the overall flow fluctuations in the far field. These findings can be extended to explain the predominantly straight LE wing shape with a small amount of curvature only observed near the wing tip for flapping fliers with Re from 103to 104.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前缘曲率对悬停和前进飞行中拍翼气动性能的影响。
本研究考虑了悬停和前进飞行条件,研究了前缘(LE)曲率在拍打翼空气动力学中的作用。一个按比例放大的机器人模型由齿条齿轮小车系统沿纵轴牵引。机器人模型的前进速度随着前进比 J 从 0(悬停)到 1.0 的变化而改变。研究表明,LE 曲率对周期平均气动升力和阻力的影响不大。然而,时间历史升力系数显示,弧度可以增强下冲程中部附近的升力。当 J 从 0 变为 1.0 时,升力从 5%下降到 1.2%。进一步的流动检查显示,LE 曲度只对外侧翼段的环流有益。通过相位锁定平面数字粒子图像测速仪(DPIV)测量发现,外侧环流的增强源于拉伸较小的前缘涡流(LEV)、减弱的后缘涡流(TEV)以及尖端涡流(TV)与次要前缘涡流的连贯合并。远摇观测结果表明,LE曲率增强了TV内的涡度,有助于减少远场的整体流动波动。这些发现可用于解释大多数拍翼飞行器的直LE翼型,只有在翼尖附近观察到少量弯曲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Stability and agility trade-offs in spring-wing systems. Genetic algorithm-based optimal design for fluidic artificial muscle (FAM) bundles. Touch-down condition control for the bipedal spring-mass model in walking. Predictive uncertainty in state-estimation drives active sensing. Analysis and actuation design of a novel at-scale 3-DOF biomimetic flapping-wing mechanism inspired by flying insects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1