Nanosheet integration of induced tunnel field-effect transistor with lower cost and lower power.

0 MATERIALS SCIENCE, MULTIDISCIPLINARY Discover nano Pub Date : 2024-07-02 DOI:10.1186/s11671-024-04036-2
Jyi-Tsong Lin, Chia-Yo Kuo
{"title":"Nanosheet integration of induced tunnel field-effect transistor with lower cost and lower power.","authors":"Jyi-Tsong Lin, Chia-Yo Kuo","doi":"10.1186/s11671-024-04036-2","DOIUrl":null,"url":null,"abstract":"<p><p>Nanosheet transistors are poised to become the preferred choice for the next generation of smaller-sized devices in the future. To address the future demand for high-performance and low-power computing applications, this study proposes a nanosheet structure with a vertically stacked design, featuring a high I<sub>ON</sub>/I<sub>OFF</sub> ratio. This Nanosheet design is combined with an induced tunnel field-effect transistor. By utilizing SiGe with a carrier mobility three times that of Si and employing a line tunneling mechanism, the research successfully achieves superior Band to Band characteristics, resulting in improved switching behavior and a lower Subthreshold Swing (SS). Comparative studies were conducted on three TFET types: Nanosheet PIN TFET, Nanosheet Schottky iTFET, and Fin iTFET. Results show that the Nanosheet PIN TFET has a higher I<sub>ON</sub>/I<sub>OFF</sub> ratio but poorer SSavg values at 47.63 mV/dec compared to the others. However, with a SiGe Body thickness of 3 nm, both Nanosheet iTFET and Fin iTFET exhibit higher I<sub>ON</sub>/I<sub>OFF</sub> ratios and superior SSavg values at 17.64 mV/dec. These findings suggest the potential of Nanosheet iTFET and Fin iTFET for low-power, lower thermal budgets, and fast-switching applications.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"108"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219690/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04036-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanosheet transistors are poised to become the preferred choice for the next generation of smaller-sized devices in the future. To address the future demand for high-performance and low-power computing applications, this study proposes a nanosheet structure with a vertically stacked design, featuring a high ION/IOFF ratio. This Nanosheet design is combined with an induced tunnel field-effect transistor. By utilizing SiGe with a carrier mobility three times that of Si and employing a line tunneling mechanism, the research successfully achieves superior Band to Band characteristics, resulting in improved switching behavior and a lower Subthreshold Swing (SS). Comparative studies were conducted on three TFET types: Nanosheet PIN TFET, Nanosheet Schottky iTFET, and Fin iTFET. Results show that the Nanosheet PIN TFET has a higher ION/IOFF ratio but poorer SSavg values at 47.63 mV/dec compared to the others. However, with a SiGe Body thickness of 3 nm, both Nanosheet iTFET and Fin iTFET exhibit higher ION/IOFF ratios and superior SSavg values at 17.64 mV/dec. These findings suggest the potential of Nanosheet iTFET and Fin iTFET for low-power, lower thermal budgets, and fast-switching applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低成本、低功耗的诱导隧道场效应晶体管纳米片集成。
纳米片晶体管有望成为未来下一代小型设备的首选。为了满足未来高性能和低功耗计算应用的需求,本研究提出了一种垂直堆叠设计的纳米片结构,具有高离子/离子交换比的特点。这种纳米片设计与诱导隧道场效应晶体管相结合。通过利用载流子迁移率是硅三倍的锗硅,并采用线隧道机制,该研究成功地实现了卓越的带间特性,从而改善了开关行为并降低了次阈值波动(SS)。我们对三种 TFET 类型进行了比较研究:纳米片 PIN TFET、纳米片肖特基 iTFET 和鳍式 iTFET。结果显示,纳米片 PIN TFET 的 ION/IOFF 比值较高,但 SSavg 值较低,为 47.63 mV/dec。然而,在硅锗体厚度为 3 nm 时,纳米片 iTFET 和鳍式 iTFET 都显示出更高的 ION/IOFF 比和更优越的 SSavg 值(17.64 mV/dec)。这些发现表明,纳米片 iTFET 和鳍式 iTFET 在低功耗、低热预算和快速开关应用方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. Exploitation of functionalized green nanomaterials for plant disease management. Antimicrobial efficacy of nano-particles for crop protection and sustainable agriculture. Effect of annealing temperature on the optoelectrical synapse behaviors of A-ZnO microtube. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1